• Title/Summary/Keyword: Electricity generation

Search Result 1,048, Processing Time 0.031 seconds

Solar power and desalination plant for copper industry: improvised techniques

  • Sankar, D.;Deepa, N.;Rajagopal, S.;Karthik, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.59-70
    • /
    • 2015
  • In India, continuous production of electricity and sweet/potable water from Solar power and desalination plant plays a major role in the industries. Particularly in Copper industry, Solar power adopts Solar field collector combined with thermal storage system and steam Boiler, Turbine & Generator (BTG) for electricity production and desalination plant adopts Reverse osmosis (RO) for sweet/potable water production which cannot be used for long hours of power generation and consistency of energy supply for industrial processes and power generation cannot be ensured. This paper presents an overview of enhanced technology for Solar power and Desalination plant for Copper industry making it continuous production of electricity and sweet/potable water. The conventional technology can be replaced with this proposed technique in the existing and upcoming industries.

Demand Response Effect on Market Power with Transmission Congestion in Electricity Market (전략적 수요반응이 송전선 혼잡의 시장지배력에 미치는 영향)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1705-1711
    • /
    • 2017
  • This paper analyzes the impact of DRA (Demand Response Aggregator) on market power when competing with power generation companies (Gencos) in the electricity market. If congestion occurs in the transmission line, the strategic choice of the power generation company increases exercise of market power. DRA's strategic reduction of power load impacts the strategy of Gencos, which in turn affects the outcome of the load reduction. As the strategy of Gencos changes according to the location of the congested transmission line, the impact on the market depends on the relative location of the congested line and the DRA.

Development of an Integrated Power Market Simulator for the Korean Electricity Market

  • Hur Jin;Kang Dong-Joo;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.416-424
    • /
    • 2005
  • At present, the Korean electricity industry is undergoing restructuring and the Cost Based-generation Pool (CBP) market is being operated in preparation of a Two Way Bidding Pool (TWBP) market. In deregulated electricity industries, an integrated power market simulator is one of the tools that can be used by market participants and market operators analyzing market behaviors and studying market structures and market codes. In this regard, it is very important to develop an electricity market simulator that reflects market code providing a market operation mechanism. This paper presents the development of an integrated market simulator, called the Power Exchange Simulator (PEXSIM), which is designed to imitate the Korean electricity market considering the various features of the market operating mechanism such as uniform price and constrained on/off payment. The PEXSIM is developed in VB.NET and composed of five modules whose titles are M-SIM, P-SIM, O-SIM, T-SIM and G-SIM interfacing the Access database program. To verify the features and the performance of the PEXSIM, a small Two Way bidding market with a 12-bus system and a One Way bidding market for generator competition will be presented for the electricity market simulations using PEXSIM.

A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT) (횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구)

  • Ha, Jin-Ho;Kim, H.C.;Kim, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju (배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구)

  • Ku, Bon-Hui;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

A Study on Electricity Generation of Marine Sediment Cells (해양 퇴적토전지의 발전 특성에 대한 연구)

  • Lee, Eun-Mi;Kwon, Sung-Hyun;Rhee, In-Hyoung;Park, Byung-Gi;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.647-653
    • /
    • 2011
  • Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 $W/m^2$ of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 $W/m^2$ compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied 'fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.

Development of Automatic Grease Lubricator for Gas Generation Type of Galvanic Electricity (동전기적 가스발생방식의 자동윤활주유기 개발)

  • Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.121-127
    • /
    • 2008
  • Automatic grease lubricator is an equipment that provides adequate amount of fresh grease constantly to the shaft and bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This paper is developing an automatic grease lubricator using a mode of the gas generation type from galvanic electricity. The ultimate goal of this equipment is to lubricate an adequate amount of grease with galvanic corrosion. In an electrolyte, combining anode(Mo) with cathode(Zn) is pressing out hydrogen gas of an galvanic element with galvanic reaction. The characteristics of this method is continuous flowing small hydrogen gas and controling the usage of the amount of the generation of hydrogen gas. The exterior body of grease lubricator was analyzed by Digital Mock-up of CATIA V5 and finite element analysis. The maximum stress is distributed over the outlet part where the grease lubricator suddenly narrowly contracts. The outlet part is analyzed with different constructed angle due to the different loading and setting angles. Using the analyzed design, RP trial products were producted and tested.

  • PDF

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

A Study on the Improvement of Subsidy Program for CHP Plant Connected with Capital Region District Heating System (수도권 지역난방연계 열병합발전소의 기반기금 지원과 개선방안)

  • 김창수;이창호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.97-103
    • /
    • 2004
  • CHP system supplies electricity and heating together with high efficiency. Current utility's CHP system uses electric power by itself and sells thermal energy to KDHC(Korea District Heating Corporation). CHP's operation cost except sales revenue of heating was covered by the sale revenue of electricity. Thus Electric generation cost in district Heating CHP system has close relationship with the level of heating price. However, after the restructuring of electricity industry, the operation cost could not be covered by sales revenue of heating and electricity. This loss was compensated by energy subsidy program in the electric power industry infrastructure fund. This paper suggests reasonable evaluation and improvement methods of the loss calculation of CHP system utilizing the infrastructure fund efficiency In terms of the direction of support by the fund, it provides the methods to prevent inefficient operation through setting up the upper limit of subsidy and to improve the loss calculation. Moreover, it suggest fixed rate support by heating supply level and reducing subsidy gradually for an efficient operation of CHP system.