• Title/Summary/Keyword: Electricity Vehicle

Search Result 137, Processing Time 0.03 seconds

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part II: Verification of Driving Cycle (전기자동차 성능평가를 위한 도심 주행 모드 개발 Part II: 주행 모드 검증)

  • Jeong, Nak-Tak;Yang, Seong-Mo;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;You, Sehoon;Kim, Hyunsoo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Recently, due to various environmental problems such as global warming, increases of international oil prices, exhaustion of resource, a paradigm of world automobile market is rapidly changing from conventional vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV, HEV, PHEV and FCEV. Generally, in order to measure fuel consumption and pollutant emissions of cars, chassis dynamometer tests are performed on various driving cycles before actual driving test. There are many driving cycles for performance evaluation of conventional vehicles. However, there is a lack of researches on driving cycle for EV. In this study, the urban driving cycle for performance evaluation of electric vehicles was developed. This study is composed of two parts. In the part 1, the urban driving cycle 'GUDC-EV(Gwacheon-city Urban Driving Cycle for Electric Vehicles)' was developed by using driving data, which were obtained through actual driving experiment, and statistic analysis with chronological table. In this paper part 2, in order to verify the developed driving cycle GUDC-EV, virtual EV platforms were configured and simulations were performed with actual driving data using In addition, simulation results were compared with existing driving cycles such as FTP-72, NEDC and Japan 10-15.

A Study on the Estimation and Improvement of the Current Collection Performance for the Next Generation High-Speed Train (HEMU-430X) (차세대 고속철도의 집전성능 예측 및 향상 방안에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.429-435
    • /
    • 2012
  • The HEMU-430X is a world-class railway vehicle which aimed the maximum speed of 430km/h and the operation speed of 370km/h. To maintain high-speed operation condition over 300km/h, various requirements for satisfy exist. However, one of the most important things is a reliable supply of electricity. Especially, the dynamic interaction between the pantograph and overhead contact line at high-speed is a significant matter to pre-evaluate. In this paper, using the dynamic interaction analysis program, current collection performance of the HEMU-430X was investigated. Firstly, based on the international standard, performance of the original specifications was evaluated. In addition, through study on changes in tension and span length, improvement of the performance was considered.

Effects of Grid Characteristics on High Speed Circuit Breaker for Railway Vehicle (철도 차량용 직류 고속도 차단기의 그리드 특성 해석)

  • Park, Ji-Won;Jung, Jooyoung;Choi, Jinnil
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • High speed circuit breakers(HSCB) interrupt the generated arc within the arc chute to turn off the electricity flowing through the main circuit to prevent ground faults. In order to explore the arc generated from the contactor operation, arc definition, establishment of arc interruption method, and analysis of magnetic driving force are required. In this paper, arc interruption capability has been estimated by exploring the difference in magnetic flux density of Lorenz forces using finite element analysis. In addition, since the number of grids and changes in the grid shape within the arc chute influence the formation of the inner magnetic field, its effects have been explored to enhance arc interruption capability. Assessment of interruption capability and analysis of grid shape, with rated operating current, are reported.

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.

Understanding User Acceptability Towards to Robo Taxi Based on Value Based Adoption Model (가치기반수용모델 기반의 로보택시 사용자 수용성 분석)

  • In su Kim;Jeong ah Jang;Junghwa Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.291-310
    • /
    • 2023
  • This study explores the factors which affect user acceptance for Robo Taxi, an electricity-based Autonomous Vehicles based on a Value based Adoption Model. The three main factors of benefit (usefulness and enjoyment), sacrifice (technicality and perceived fee level), and user experience about mobility services such as car sharing, taxi, and autonomous vehicles, were finally selected as independent variables as a influential factors on perceived values and adoption intention of Robo taxi. The study found that usefulness, enjoyment, and perceived fee had a significant effects on adoption intention, and some user experiences had a significant effect on benefit factors. This study has important implications for incorporating the Value-based Adoption Model results into the service design for the activation of Robo taxi, and furthermore, they can provide a theoretical basis for effective use of the research findings.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

HOW TO DEFINE CLEAN VEHICLES\ulcorner ENVIRONMENTAL IMPACT RATING OF VEHICLES

  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.