• 제목/요약/키워드: Electricity Supply

검색결과 649건 처리시간 0.025초

방사형차트를 이용한 국가 에너지 및 전력 생산원의 사회적 영향 종합평가 (Integrated Assessment for Social Impacts of National Energy and Electricity Generation Sources Using Radar Chart)

  • 김태운;김성호;문기환;하재주;김홍채;장순홍
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.341-346
    • /
    • 2004
  • 국가의 다양한 전력생산시스템 (원자력, 석탄, 중유, LNG, 수력 발전원 등)에 대한 사회적 영향을 종합적으로 비교하기 위하여 고려된 평가항목으로서 산업적 경제성, 개인적 보건영향 (리스크), 환경영향 및 국가차원의 기여도 등이 선택되었다. 각 평가항목은 특히 발전단가, 추정사망 자수, 이산화탄소 배출량, 연료수급 안정성 등에 의하여 대표되었다. 이러한 다기준 의사결정문제의 평가방법을 개발하기 위한 예비적 연구단계로서 방사형 차트를 이용한 표현방법을 도입하였다. 이 연구에서는 이러한 사회적 영향 다이어그램을 이용하여 각 발전원의 사회적 영향의 다른 점을 쉽게 가시화 할 수 있었다. 이 연구결과에 기초하여 정성적/정량적 종합비교 방법론이 개발될 예정이다.

  • PDF

부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석 (A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method)

  • 김동준;강병하;장영수
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

도심 임대아파트의 에너지 및 상수 소비 특성에 관한 연구 (An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment)

  • 서윤규;김주영;홍원화
    • 한국주거학회논문집
    • /
    • 제20권6호
    • /
    • pp.39-46
    • /
    • 2009
  • It has been a serious problem to consume the energy of apartment while increasing to use of heating & cooling System because of residence environmental upgrades. Great attention has been shown to the problem of the rental apartment, so there are few reports of energy consumption about the rental apartment in korea. To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072\;m^2$ per year and typical energy consumption unit was $604.2\;MJ/m^2$ on $74.4\;m^2$ of area and $448.8\;MJ/m^2$ on $105.8\;M^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an typical energy consumption unit standard through this research, apartments should use energy more efficiently.

석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향 (Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation)

  • 임지용;유호선
    • 플랜트 저널
    • /
    • 제14권1호
    • /
    • pp.47-51
    • /
    • 2018
  • 본 연구에서는 석탄화력발전의 출력 감소가 계통한계가격과 온실가스감축량에 어떻게 영향을 미치는지 분석하였다. 분석방법은 국영 발전회사에서 이용하는 전력거래예측프로그램을 이용하였으며 전력계통의 운영조건은 제7차 전력수급기본계획의 전력수요와 전원구성을 근거로 하였다. 분석결과 전체 석탄화력발전의 최대출력을 29 [%]까지 감소한 경우 계통한계가격은 감소전과 비교하여 12 [%p] 상승하고 온실가스 배출량은 9,966 [kton] 감축되었다. 또한 석탄화력발전기 전체 용량의 30 [%]에 해당하는 저효율 석탄화력발전기 16기를 정지한 경우 계통한계가격은 14 [%p] 까지 증가하였고 온실가스 배출량은 12,574[kton]까지 감축 가능함을 알 수 있었다.

  • PDF

에너지 안보 및 기후변화 대책을 고려한 발전구성비의 도출 : 정책 목표간의 상호보완성을 중심으로 (Fuel Mix of Electricity Generating System Considering Energy Security and Climate Change Mitigations : Focusing on Complementarity between Policy Objectives)

  • 류하늬;김규남;김연배
    • 자원ㆍ환경경제연구
    • /
    • 제20권4호
    • /
    • pp.761-796
    • /
    • 2011
  • 본 연구는 발전부문에서 에너지 정책의 목표인 에너지 안보와 기후변화 대책 간의 상호보완성을 고려하면서 최저 비용을 기준으로 도출된 발전 구성비를 나타내었다. 에너지 안보의 수준을 측정하기 위해 에너지 안보 가격지수를 도입하여 화석연료의 공급 집중도에서 비롯된 안보 위협을 평가하였다. CSC 방법론의 적용을 통해 원자력과 육상풍력이 석탄가스화 복합발전 및 미분탄 화력발전을 대체하는 경우가 비용효율적인 대체안으로 나타났으며, 잠재적인 탄소 감축 가능량 및 안보 개선폭을 확인하였다. 또한 이러한 대체안이 탄소 감축뿐만 아니라 에너지 안보의 개선을 달성하는 상호보완성을 확인하였다. 추가적인 에너지 안보의 개선을 위해서는 화석연료의 해외자원개발을 통한 에너지 자급률을 제고하는 것이 최선의 대안으로 나타났으며, 이를 기반으로 2020년의 특정 목표치를 달성하기 위해 최저 비용을 나타내는 발전구성비를 도출하였다.

  • PDF

1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석 (Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery)

  • 백자현;고은영;강태혁;이한상;조수환
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.

우드칩 바이오매스를 이용한 열병합발전 운영 사례 분석 (Case Study and Evaluation of Economic Feasibility of Combined Heat and Power System using Woodchip Biomass)

  • 서길영;김성현
    • 신재생에너지
    • /
    • 제8권4호
    • /
    • pp.21-29
    • /
    • 2012
  • The extensible supply of New & Renewable energy resources desperately needs to counter the high dependence on imported energy, recent high oil prices and the Climate Change Conference, and the government has operated the 'Renewable Portfolio Standard' (RPS) as one of the renewable energy policy from 2012. By analyzing the operation case of combined heat and power plant using the woodchip biomass, we drew the price of wood chip fuel, plant capacity factor, electricity selling price, heat selling price and LCOE value. After analyzing the economic feasibility of 3MWe combined heat and power plant based on the operating performance, the minimum of economic feasibility has appeared to be secured according to the internal rate of return (IRR) is 6.34% and the net present value (NPV) is 3.6 billion won as of 20 years life time after installation, and after analyzing the cases of the economic feasibility of the price of wood chip, plant capacity factor, electricity and heat selling price are changed, the economic feasibility is valuable when the price of wood chip is over 64,000 won/ton, NPV is minus, and the capacity factor is above 46.9%, the electricity selling price is 116 won/kWh and the heat selling price is above 75,600 won/Gcal. When going over the new installation hereafter, we need the detailed review of the woodchip storage and woodchip feeding system rather than the steam-turbine and boiler which have been inspected many times, the reason why is it's hard to secure the suitable quality (constant size) of woodchip by the lack of understanding about it as a fuel because of the domestic poor condition and the calorific value of woodchip is seriously volatile compared with other fuels.

전력수요의 중첩 불확실성을 고려한 원전축소 정책의 실물옵션 연구 (Real Options Study on Nuclear Phase Down Policy under Knightian Uncertainty)

  • 박호정;이상준
    • 자원ㆍ환경경제연구
    • /
    • 제28권2호
    • /
    • pp.177-200
    • /
    • 2019
  • 전력수급계획의 근간이 되는 전력수요 전망은 GDP와 기상변수 등 다양한 요인에 의해 영향을 받기 때문에 확률 프로세스로 이해할 수 있다. 이 전망치를 바탕으로 전력설비의 구성 방안이 수립되는데, 실제 의사결정 과정은 주어진 확률분포에 대한 정보가 온전하다고 가정한다는 한계를 가진다. 그러나 현실적으로는 확률분포 자체의 중첩 불확실성이 존재하기 때문에 강건한 최적계획(robust optimization)의 수립이 필요하다. 본 논문은 중첩 불확실성을 포함한 발전설비 조정의 최적의사결정을 연구한다. 구체적으로 원자력의 감축투자 관련 실물옵션 모형을 수립하고 우리나라 전력수급기본계획의 특성을 고려한 중첩 불확실성하에서 원전감축 투자를 분석한다. 분석 결과, 현재의 원전축소 정책은 전력수요 증가율이 낮다는 것을 전제로 한 정책으로서 전력수요 증가에 대응할 수 있는 정책 강건성을 갖추지는 못한다는 것을 보여준다.

경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계 (Optimal Design of Urban MICROGRID using Economical Analysis Program)

  • 유승덕;임성우;임유석;황성욱;이학주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

미국의 재생 에너지 확대 및 지원정책 연구 (A Review of U.S. Renewable Energy Expansion and Support Policies)

  • 김철
    • 토지주택연구
    • /
    • 제9권2호
    • /
    • pp.41-50
    • /
    • 2018
  • The purpose of this study is to review the U.S. renewable energy policies implemented by the federal government and the state governments to investigate potential barriers of renewable energy expansion and to develop policy implications for the successful renewable energy policy making in Korea. Recently, the restructuring in the energy supply chain has been being a new trend in many countries that shows a transition from traditional fossil fuels to sustainable renewable energy sources. The United States has enforced effective renewable energy policies (i.e., regulatory policies, financial incentives), which have led to the exploding growth of renewable energy facilities and productions over the last ten years. For example, many state governments in the U.S. are implementing Renewable Portfolio Standard (RPS) policies that require increased energy supply from renewable energy sources (i.e., solar, wind and geothermal). These RPS policies are expected to account for at least 10-50 percent of total electricity production in the next fifteen years. As part of results, in the recent three years, renewable energy in the U.S provided over 50 percent of total new power generation constructions. On the other hand, Korea initiated to develop climate change policies in 2008 for the Green Growth Policy that set up a target reduction of national Greenhouse Gas (GHG) emissions up to 37 percent by 2025. However, statistical data for accumulated renewable energy capacity refer that Korea is still in its early stage that contribute to only 7 percent of the total electricity production capacity and of which hydroelectric power occupied most of the production. Thus, new administration in Korea announced a new renewable energy policy (Renewable Energy 3020 Plan) in 2017 that will require over 95 percent of the total new generations as renewable energy facilities to achieve up to 20 percent of the total electricity production from renewable energy sources by 2030. However, to date, there have not been enough studies to figure out the barriers of the current policy environment and to develop implications about renewable energy policies to support the government plan in Korea. Therefore, this study reviewed the U.S. renewable energy policies compared with Korean policies that could show model cases to introduce related policies and to develop improved incentives to rapidly spread out renewable energy facilities in Korea.