• Title/Summary/Keyword: Electricity Storage

Search Result 273, Processing Time 0.022 seconds

Analysis of the Impact of Smart Grids on Managing EVs' Electrical Loads (스마트그리드를 통한 전기자동차의 전력망 영향 관리 효과)

  • Park, Chan-Kook;Choi, Do-Young;Kim, Hyun-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.767-774
    • /
    • 2013
  • The electricity demand and supply could be off balance if several electric vehicles(EVs) were charged at the same time or at peak load times. Therefore, smart grids are necessary to flatten the EVs' electricity demand and to enable EVs to be used as distributed storage devices as electricity demand from EV-charging increases. There are still few quantitative studies on the impact of smart grids on managing EVs' electrical loads. In this study, we analyzed the quantitative impact of smart grids on managing EVs' electrical loads and suggested policy implications. As a result, it is identified that smart grids can manage effectively EVs' impact on electrical grids. The electricity market structure and regulatory framework should support the demonstration and commercialization of smart grid technologies.

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.

A Control and Protection Model for the Distributed Generation and Energy Storage Systems in Microgrids

  • Ballal, Makarand Sudhakar;Bhadane, Kishor V.;Moharil, Ravindra M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.748-759
    • /
    • 2016
  • The microgrid concept is a promising approach for injecting clean, renewable, and reliable electricity into power systems. It can operate in both the grid-connected and the islanding mode. This paper addresses the two main challenges associated with the operation of a microgrid i.e. control and protection. A control strategy for inverter based distributed generation (DG) and an energy storage system (ESS) are proposed to control both the voltage and frequency during islanding operation. The protection scheme is proposed to protect the lines, DG and ESS. Further, the control scheme and the protection scheme are coordinated to avoid nuisance tripping of the DG, ESS and loads. The feasibility of the proposed method is verified by simulation and experimental results.

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

Analysis on Economic Feasibility of Electric Night Storage Heat Pump as a Substitution of a Heater (심야전기보일러 대체 Heat Pump의 경제성 분석)

  • JUNG, H.;JO, J.Y.;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • Electric night storage heater was introduced and disseminated for power grid balancing and efficient management of power generation facility. But fuel cost for heating has been increased rapidly while the cost of electricity increased slightly. This abnormal rate system caused peak load in winter at last. To solve this problem, application of an air source heat pump was suggested. In the study, the effect of replacing night heater by heat pump and the economics were analysed. In addition the expectation of prospect of heat pump penetration was simulated based on surveyed and investigated data. As a result, fund supporting as well as institutional backing was needed for effective propagation and return of investment.

High School Exploration of a Phase Change Material as a Thermal Energy Storage

  • Ardnaree, Kwanhathai;Triampo, Darapond;Yodyingyong, Supan
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.145-150
    • /
    • 2021
  • The present study describes a hands-on experiment to help students understand the concept of phase change or phase transition and its application in a phase change material (PCM). PCMs are substances that have the capability of storing and releasing large amounts of thermal energy. They act as energy storage materials that provide an effective way to save energy by reducing the electricity required for heating and cooling. Lauric acid (LA) was selected as an example of the PCM. Students investigated the temperature change of LA and the temperature (of air) inside the test tube. The differences in the temperatures of the systems helped students understand how PCMs work. A one-group pretest and posttest design was implemented with 34 grade-11 students in science and mathematics. Students' understanding was assessed using a multiple-choice test and a questionnaire. The findings revealed that the designed activity helped students understand the concept of phase change and its application to materials for thermal energy storage.

A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization (Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구)

  • Gong, Eun-Kyoung;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Performance Analysis for Regenerative Energy Storage System in Kyoung-bu High Speed Railway (경부고속철도 회생 에너지 저장시스템 성능 분석)

  • Jang, Min-Ju;Jeon, Yong-Joo;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1391-1397
    • /
    • 2015
  • Recently, various researches are conducted in the application of regenerative energy produced during the operation of an electric locomotive. Regenerative energy is produced by a generator in the brake procedure. The generator is operated by kinetic energy of an electric railroad using an electric motor. The process of producing regenerative energy varies with the current type of a railroad and its running condition. The quality of electric power can be improved and electric energy can be utilized effectively, especially in the use of an energy storage system (ESS). Thus, it is necessary to apply ESS into AC section and high speed railway. This study analyses the composition of the regenerative ESS equipment installed in Yong-Jeong sectioning post, operational principle, charge and discharge algorithm and energy efficiency. The analysis shows that CO2 emissions can be reduced about 0.5 ton per a day. In addition, ESS helps saving the energy and the compensation of the voltage drop caused by the operation of high speed train when it is installed at the end of the feeder section. The number of high speed train will be increased continuously related to the electrification rate. Therefore, applying the ESS to high speed railway is expected to solve the instability of the feeder voltage and the equipment capacity problem caused by the high speed trains.

Economic Feasibility of Energy Storage System connected with Solar /Wind Power Generation (태양광/풍력 연계 기반의 ESS 경제성 분석)

  • Lee, Yong Bong;Kim, Jeong Ho
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.74-81
    • /
    • 2015
  • Currently, the government is encouraging the introduction of energy storage system to reduce carbon emissions and peak power demand. The government is planning the cumulative capacity of ESS of 2GW in 2020. By utilizing charge and discharge of the ESS, it is possible to sell the surplus power to utility and electricity market. This paper suggests the model that economic feasibility of energy storage system for planning the construction of power generation facilities in 2035. Our results of simulation indicate the energy storage plan of utility for constructing renewable energy facilities is need to incentives from the government to encourage power utilities and expansion of ESS.