• Title/Summary/Keyword: Electricity Market

Search Result 610, Processing Time 0.026 seconds

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

Economic Load Dispatch Considering Power System Reliability under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도를 고려한 경제부하배분)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Cha, Jun-Min;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.391-393
    • /
    • 2000
  • This paper presents an new algorithm for the economic load dispatch considering the reliability level constraints of composite power system under deregulated electricity market. It is the traditional ELD problem that generation powers have been dispatched In order to minimize total fuel cost subjected to constraints which sum of powers generated must equal the received load and no violating lower and upper limit constraints on generation. Under deregulated electricity market, however, generation powers of a pool have to be reallocated newly in order to satisfy the reliability differentiated level required at a load point because of a reliability differentiated electricity service which is a part of the priority service. In this study, new economic load dispatch algorithm for reallocating the generation powers of a pool in order to satisfy the reliability differentiated level under deregulated competitive electricity market is proposed. The uncertainties of not only generators but also transmission lines are considered fer the reliability evaluation. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Development of Korean Market Simulator (한국형 Market Simulator 개발)

  • Hur, Jin;Kang, Dong-Joo;Kook, Kyung-Soo;Kim, Tai-Hyun;Lee, Jeong-Ho;Moon, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.108-110
    • /
    • 2002
  • Power System deregulation has become a worldwide trend which introduces competition in electric power system in order to realize efficient electricity production and investment. In this regard, it is very important to develop an electricity market simulator so that it is to analyze power market and study bidding strategies, market operation and market power and train market participants. In this paper, we introduce general functions and a structure of market simulator, also design the framework of the Korean market simulator based on core concepts of electricity market simulator.

  • PDF

New Electricity Load Model (새로운 전력 부하모형)

  • Kim, Joo-Hak;Choi, Joon-Young;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

Generation Investment Model Development and Behavior Analysis using System Dynamics Approach (System Dynamics에 의한 발전설비투자 모델개발 및 행태 분석)

  • Kim, Hyun-Shil;Yoon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1731-1737
    • /
    • 2007
  • The Korea electricity wholesale market is operated under the cost-based-pool system and the government regulation to the new generation capacities in order to insure the resource adequacy. The goal of government's regulation is the electricity market stability by attracting proper generation investment while keeping the reliability of system. Generation companies must mandatory observe that government plan by now. But if the restructuring is to be complete, generation companies should not bear any obligation to invest unless their profitability is guaranteed. Namely the investors' behavior will be affected by the market prices. In this paper, the system dynamics model for Korea wholesale electricity market to examine whether competitive market can help to stabilize is developed and analyzes the investors behavior. The simulation results show that market controlled by government will be operated stable without resulting in price spike but there is no lower price because of maintaining the reasonable reserve margin. However, if the competition is introduced and the new investment is determined by the investor's decision without government intervention, the benefits from lower wholesale price are expected. Nevertheless, the volatility in the wholesale market increases, which increases the investment risks.

A Study on the Amendment of Base Load Market and CP in Electricity Market (전력시장에서 용량요금 메커니즘 변화의 영향과 개선)

  • Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.255-257
    • /
    • 2007
  • Korea electricity market consists of two payment systems, capacity and energy. Capacity payments are given to the generators according to its hourly availability considering hourly and seasonal weighting factors. Energy payments are settled at the marginal generation cost based on generator variable cost. In 2007, base load energy market is closed and single capacity payment system is begun to apply in electricity market. In this revised market rule, energy price cap for base load generators is newly introduced. We analyze impact of market rule revision in 2007 on base load generators and suggest improvement scheme to enforce market system in this study.

  • PDF

A Study on the Supplier's Bidding Strategy Including Operating Reserve in an Electricity Market (발전 예비력을 포함한 전력시장에서의 공급자 입찰전략 연구)

  • Lee Kwang-Ho;Shin Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • In an electricity market with an imperfect competition, participants make plans of bidding and transaction strategies to maximize their own profits. The market price and the quantity are concerned with the operation reserve as well as the bidding system and demand curves in an electricity market. This paper presents a market model combined by an energy market and an operating reserve market. The competition of the generation producers in the combined market is formulated as a gaming of selecting bid parameters such as intersections and slopes in bid functions. The Nash Equilibrium(NE) is analyzed by using a hi-level optimization; maximization of Social Welfare(SW) and maximization of the producers' profits.

Demand Response Effect on Market Power with Transmission Congestion in Electricity Market (전략적 수요반응이 송전선 혼잡의 시장지배력에 미치는 영향)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1705-1711
    • /
    • 2017
  • This paper analyzes the impact of DRA (Demand Response Aggregator) on market power when competing with power generation companies (Gencos) in the electricity market. If congestion occurs in the transmission line, the strategic choice of the power generation company increases exercise of market power. DRA's strategic reduction of power load impacts the strategy of Gencos, which in turn affects the outcome of the load reduction. As the strategy of Gencos changes according to the location of the congested transmission line, the impact on the market depends on the relative location of the congested line and the DRA.

Forecasting of Electricity Demand for Fishing Industry Based on Genetic Algorithm approach (유전자 알고리즘에 기반한 수산업 전력 수요 예측에 관한 연구)

  • Kim, Heung-Soe;Lee, Sung-Geun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2017
  • Energy is a vital resource for the economic growth and the social development for any country. As the industry becomes more sophisticated and the economy more grows, the electricity demand is increasing. So forecasting electricity demand is an important for electricity suppliers. Forecasting electricity demand makes it possible to distribute electricity demand. As the market for Negawatt market began to grow in Korea from 2014, the prediction of electricity consumption demand becomes more important. Moreover, power consumption forecasting provides a way for demand management to be directly or indirectly participated by consumers in the electricity market. We use Genetic Algorithms to predict the energy demand of the fishing industry in Jeju Island by using GDP, per capita gross national income, value add, and domestic electricity consumption from 1999 to 2011. Genetic Algorithm is useful for finding optimal solutions in various fields. In this paper, genetic algorithm finds optimal parameters. The objective is to find the optimal value of the coefficients used to predict the electricity demand and to minimize the error rate between the predicted value and the actual power consumption values.

A Study on the Participation of Virtual Power Plant Based Technology Utilizing Distributed Generation Resources in Electricity Market (분산발전자원을 활용한 가상발전소 기반 기술의 전력시장 참여 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • A virtual power plant (VPP) technology is a cluster of distributed generation installations. VPP system is that integrates several types of distributed generation sources, so as to give a reliable overall power supply. Virtual power plant systems play a key role in the smart grids concept and the move towards alternative sources of energy. They ensure improved integration of the renewable energy generation into the grids and the electricity market. VPPs not only deal with the supply side, but also help manage demand and ensure reliability of grid functions through demand response (DR) and other load shifting approaches in real time. In this paper, utilizing a variety of distributed generation resources(such as emergency generator, commercial generator, energy storage device), activation scheme of the virtual power plant technology. In addition, through the analysis of the domestic electricity market, it describes a scheme that can be a virtual power plant to participate in electricity market. It attempts to derive the policy support recommendation in order to obtain the basics to the prepared in position of power generation companies for the commercialization of virtual power plant.