• Title/Summary/Keyword: Electricity Consumption Prediction

Search Result 32, Processing Time 0.022 seconds

Nonlinear impact of temperature change on electricity demand: estimation and prediction using partial linear model (기온변화가 전력수요에 미치는 비선형적 영향: 부분선형모형을 이용한 추정과 예측)

  • Park, Jiwon;Seo, Byeongseon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.703-720
    • /
    • 2019
  • The influence of temperature on electricity demand is increasing due to extreme weather and climate change, and the climate impacts involves nonlinearity, asymmetry and complexity. Considering changes in government energy policy and the development of the fourth industrial revolution, it is important to assess the climate effect more accurately for stable management of electricity supply and demand. This study aims to analyze the effect of temperature change on electricity demand using the partial linear model. The main results obtained using the time-unit high frequency data for meteorological variables and electricity consumption are as follows. Estimation results show that the relationship between temperature change and electricity demand involves complexity, nonlinearity and asymmetry, which reflects the nonlinear effect of extreme weather. The prediction accuracy of in-sample and out-of-sample electricity forecasting using the partial linear model evidences better predictive accuracy than the conventional model based on the heating and cooling degree days. Diebold-Mariano test confirms significance of the predictive accuracy of the partial linear model.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

GP Modeling of Nonlinear Electricity Demand Pattern based on Machine Learning (기계학습 기반 비선형 전력수요 패턴 GP 모델링)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • The emergence of the automated smart grid has become an essential device for responding to these problems and is bringing progress toward a smart grid-based society. Smart grid is a new paradigm that enables two-way communication between electricity suppliers and consumers. Smart grids have emerged due to engineers' initiatives to make the power grid more stable, reliable, efficient and safe. Smart grids create opportunities for electricity consumers to play a greater role in electricity use and motivate them to use electricity wisely and efficiently. Therefore, this study focuses on power demand management through machine learning. In relation to demand forecasting using machine learning, various machine learning models are currently introduced and applied, and a systematic approach is required. In particular, the GP learning model has advantages over other learning models in terms of general consumption prediction and data visualization, but is strongly influenced by data independence when it comes to prediction of smart meter data.

Prediction of Energy Consumption in a Smart Home Using Coherent Weighted K-Means Clustering ARIMA Model

  • Magdalene, J. Jasmine Christina;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.177-182
    • /
    • 2022
  • Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.

The Prediction of Total Revenue of V2G System Considering Battery Wear Cost (배터리 열화비용을 고려한 V2G 시스템의 수익예측)

  • Won, Il-Kuen;Kim, Do-Yun;Ko, An-Yeol;Shin, Chang-Hyun;Hwang, Jun-Ha;Kim, Young-Real;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.85-94
    • /
    • 2015
  • Recently, research on the smart grid that combines ICT(Information & Communication technology) to the power system has been actively progressed. If the occupancy of the EV(Electric vehicle) is increased. the V2G(Vehicle to grid) system is available which constitutes the micro-grid through battery of EV. V2G system performs load leveling and efficient energy consumption by battery operation considering load condition. But, if the battery is used only depending on the electricity rates, it doses not consider the life of the battery. The ACC(Achievable cycle) and the total transferable energy of battery varies corresponding to the selected DOD(Depth of discharge). In this paper, the optimal DOD selection method of V2G system considering battery wear cost and average driving distance of EV. Also, the total revenue prediction of various nation is presented considering the actual electricity costs per hour.

Energy and Economic Analysis of Heat Recovery Cogeneration Loop Integrated with Heat Pump System by Detailed Building Energy Simulation (건물 에너지 상세 해석을 통한 소형 열병합 발전 및 히트펌프 복합 시스템의 경제성 분석)

  • Seo, Dong-Hyun;Koh, Jae-Yoon;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • Up until recently, the energy and the economic analysis of a cogeneration system have been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables users to decide proper cogeneration system capacity and to estimate more accurate building energy consumption. eQUEST also verified the energy analysis when the heat pump system is integrated with the cogeneration system. The mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO(Korea Electricity Power COmpany) and KOGAS(KOrea GAS company).

Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future (장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발)

  • Shim, Kyudae;Ko, Young-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1023-1035
    • /
    • 2021
  • The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network (신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.137-146
    • /
    • 2011
  • In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.