• 제목/요약/키워드: Electrical potential energy

검색결과 550건 처리시간 0.027초

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰 (A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems)

  • 박형기;김도영;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구 (Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer)

  • 백창민;이건;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.

이방성 층상구조에 대한 전위와 전기장 및 전기비저항탐사 계산 연구 (Forward Calculation of Electric Potential, Electric Field and Resistivity Survey on Anisotropic Layered Half Space)

  • 나성호;김형수
    • 지구물리와물리탐사
    • /
    • 제24권3호
    • /
    • pp.98-112
    • /
    • 2021
  • 임의의 전기 이방성을 갖는 지하 층상 구조에 유입되는 전류에 의한 전위와 전기장의 계산을 위하여, Das (1995)에 의해 연구되었던 해석해 알고리듬을 면밀하게 검토하고 개선하였다. 모든 이론 전개를 단계별로 확인하였으며, 그에 따라 전류 전극에 의한 전위 및 전류를 구하는 컴퓨터 프로그램을 작성하였다. 전위와 전기장의 계산을 통해 이방성 층상구조에 대한 전기 비저항 탐사 겉보기 비저항 변화를 전극 간격과 전극 운영 방향에 따라 계산하였다. 이러한 결과들을 예시로 도시화함으로써 전기적 이방성 매체의 효과를 검토하였다.

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

순간 정전시 펌프 구동용 유도전동기의 발전 동작에 관한 연구 (Study on the Generating Operations of the Induction Motor for Driving the Pump During Instantaneous Power Interruption)

  • 김종겸
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.65-70
    • /
    • 2016
  • Power interruption is a phenomenon that no voltage is displayed over a short time or long time. Most devices will not operate normally when the supply voltage is low or does not exist. However, the device can also be operated with a different power which is ensured by a separate power generation. Recently, power interruption has been reduced gradually by the improvement of electricity quality, its duration also has been very short. Induction motors are widely used for the pumping in the water and sewage facilities and power plant applications. The pump is used as a machine for moving the fluid in the high place from a low location. So pump equipment always have a potential energy. If a momentary interruption occurs, the potential energy of the pump is reversed as that of water turbine and motor is operated as generator. This study is an analysis for the voltage variation, current, torque and power flow by the generating operation of the induction motor before and after the change of momentary interruption.

Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation

  • Karami, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.468-475
    • /
    • 2008
  • This paper presents a method for estimating the transient stability status of the power system using radial basis function(RBF) neural network with a fast hybrid training approach. A normalized transient energy margin(${\Delta}V_n$) has been obtained by the potential energy boundary surface(PEBS) method along with a time-domain simulation technique, and is used as an output of the RBF neural network. The RBF neural network is then trained to map the operating conditions of the power system to the ${\Delta}V_n$, which provides a measure of the transient stability of the power system. The proposed approach has been successfully applied to the 10-machine 39-bus New England test system, and the results are given.

사중극자 질량 분석기를 이용한 $BCl_3/Ar$ 유도결합 플라즈마 특성 진단 (Diagnostics of Inductively Coupled $BCl_3/Ar$ Plasma Characteristics Using Quadrupole Mass Spectrometer)

  • 김관하;김창일
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권4호
    • /
    • pp.204-208
    • /
    • 2006
  • In this study, we investigated the ion energy distributions in a chlorine based inductively coupled plasma by quadrupole mass spectrometer with an electrostatic ion energy analyzer. Ion energy distributions are presented for various plasma parameters such as $BCl_3/Ar$ gas mixing ratio, RF power, and process pressure. As the $BCl_3/Ar$ gas mixing ratio and process pressure decreases, and RF power increases, the saddle-shaped structures is enhanced. The reason is that there are ionized energy difference between $BCl_3$ and Ar, change of plasma potential, alteration of mean free path. and variety of ion collision in the sheath.

25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험 (A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage)

  • 홍원표;원종수;이송엽;이승원
    • 대한전기학회논문지
    • /
    • 제37권10호
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF