• 제목/요약/키워드: Electrical insulation breakdown strength

검색결과 169건 처리시간 0.03초

산화마그네슘 첨가에 따른 나노컴퍼지트의 수명평가 (Life Evaluation of Nano-Composites According to the Addition of MgO)

  • 신종열;정인범;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제28권6호
    • /
    • pp.390-395
    • /
    • 2015
  • Molded insulation materials are widely used from large electric power transformer apparatus to small electrical machinery and apparatus. In this study, by adding MgO with the average particle of several tens nm and the excellent thermal conductivity into molding material, we improved the problem of insulation breakdown strength decrease according to rising temperature in overload or in bad environmental condition. We confirmed the life evaluation by using the insulation breakdown and inverse involution to investigate the electrical characteristics of nano-composites materials. By using a scanning electron microscope, it is confirmed that MgO power with the average particle size of several tens nm is distributed and the filler particles is uniformly distributed in the cross section of specimens. And it is confirmed that the insulation breakdown strength of Virgin specimens is rapidly decreased at the high temperature area. But it is confirmed that the insulation breakdown strength of specimens added MgO slow decreased by thermal properties in the high temperature area improved by the contribution of the heat radiation of MgO and the suppression of tree. The results of life prediction using inverse involution, it is confirmed that the life of nano-composites is improved by contribution of MgO according to the predicted insulation breakdown strength after 10 years of specimens added 5.0 wt% of MgO is increased about 2.9 times at RT, and 4.9 times at $100^{\circ}C$ than Virgin specimen, respectively.

Electrical Breakdown Strength of Insulation under Combined DC-AC Voltages

  • Grzybowski, S.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권10호
    • /
    • pp.32-39
    • /
    • 1998
  • Electrical breakdown strength of paper-oil and polypropylene/film-oil insulation samples was measured under dc, ac and pulsating voltages. The latter was obtained by superimposing ac upon dc volate and provides an attractive method for a simultaneous testing and assessment of the state of insulation of the various parts of HV apparatus in service. The measurements were carried out over a wide range of the pulsation ratio defined as p=Eac/Edc. The results obtained under pulsating voltages follow colsely an experssion which relates the breakdown strength to the sum of arc tangent and arc cotangent function of the parameter p. The study was carried out using dry paper as well as paper containing various degrees of moisture. The presence of moisture showed a pronounced effect upon the breakdown strength which varied with the pulsation parameter p.

  • PDF

표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성 (The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구 (AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer)

  • 박재준
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

6.6kV급 고온초전도 한류기용 HTS 코일의 절연 설계 및 시험 (Insulation Design and Testing of HTS coil for 6.6 kV Class HTSFCL)

  • 백승명;정종만;곽동순;류엔반둥;김상현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.263-268
    • /
    • 2003
  • The Electrical insulation design and testing of high temperature superconducting (HTS) coil for high temperature superconducting fault current limiter (HTSFCL) has been performed. Electrical insulating factors of HTS coil for HTSFCL are turn-to-turn, layer-to-layer. The electrical insulation of turn-to-turn depends on surface length, and the electrical insulation of layer-to-layer depends on surface length and breakdown strength of L$N_2$. Therefore, two basic characteristics of breakdown and flashover voltage were experimentally investigated to design electrical insulation for 6.6㎸ Class HTSFCL. We used Weibull distribution to set electric field strength for insulation design. And mini-model HTS coil for HTSFCL was designed by using Weibull distribution and was manufactured to investigate breakdown characteristics. The mini-model HTS coil had passed in AC and Impulse withstand test.

  • PDF

전력 케이블 절연재에 대한 DC절연파괴강도특성 고찰 (Investigation on DC Breakdown Strength Characteristics of Power Cable Insulation)

  • 이한주;정의환;조성훈;윤재훈;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.86-86
    • /
    • 2010
  • Recently, CV, CNCV, CNCV-W cable are used to transmit and distribute electric power. And a lot of researchers put more effort to realize high performance. The dielectric breakdown strength characteristic is a standard to design insulators. Examination of that is a main factor to determine long term insulation performance, which is used to diagnose Insulation deterioration. In this paper, we prepared XLPE, XLPE/nano-filler, LDPE/nano-filler for comparing each of the dielectric breakdown strength characteristics.

  • PDF

Effect of Laminated Polypropylene Paper on the Breakdown Strength of Multi-layer Insulation for HTS Cable

  • ;백승명;곽동순;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.87-93
    • /
    • 2004
  • Laminated Polypropylene Paper (LPP) and Kraft paper were used as ac power insulation for conventional cable as well as high temperature superconducting (HTS) cable because of its prominent insulating characteristics. However, researches on the use of LPP/Kraft paper in HTS cables are thinly scattered. In this paper, the effect of laminate polypropylene paper on the breakdown strength of LPP/Kraft multi-layer sample impregnated with liquid nitrogen (LN2)under ac and impulse applied voltage was studied. In addition, the breakdown strength characteristics of LPP and Kraft multi-layer sample were also investigated. It was found from the experimental data that the LPP has higher breakdown strength value than Kraft paper in ac and impulse. Especially in the ac case, the breakdown strength increases as the component ratio of LPP in the LPP/Kraftsample increases and slightly affected by the inserting position of LPP but in impulse case, the breakdown strength strongly depends on the number of LPP and the relative position of LPP.

  • PDF

Electrical and Mechanical Properties of Epoxy/Micro-sized Alumina Composite and the Effect of Nano-sized Alumina on Those Properties

  • Park, Jae-Jun;Shin, Seong-Sik;Yoon, Chan-Young;Lee, Jae-Young;Park, Joo-Eon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.260-263
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared and the effects of alumina content on the electrical and mechanical properties were investigated in order to develop an insulation material for gas insulated switchgear (GIS). Nano-sized alumina (average particle size: 30 μm) was also incorporated into the epoxy/micro-sized alumina composite. An electrical insulation breakdown strength test was carried out in sphere-sphere electrodes and the data were estimated by Weibull statistical analysis. Tensile strength was measured at a crosshead speed of 10 mm/min using a universal testing machine. Alumina content was varied from 0 wt% to 70 wt%.). As micro-sized alumina content increased, insulation breakdown strength increased until 40 wt% alumina content and decreased after that content. The tensile strength of a neat epoxy system was 82.2 MPa and that value for 60 wt% alumina content was 91.8 MPa, which was 111.7% higher than inthe neat epoxy system. The insulation breakdown strength of micro-sized alumina (60 wt%)/nano-sized alumina (1 phr) glycerol diglycidyl ether (GDE) (1 phr) composite was 54.2 MPa, which was 116% higher than the strength of the system without nano-sized alumina.

거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능 (Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber)

  • 이기택;황선묵;홍주일;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성 (Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.