• Title/Summary/Keyword: Electrical impedance analysis

Search Result 659, Processing Time 0.026 seconds

Line Impedance Analysis of Underground Cable in Power Plant (발전소에 포설된 케이블 선로 임피던스 분석)

  • Ha, C.W.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.612-613
    • /
    • 2007
  • The line impedance is important data that are applied in all analysis fields of electric power system such as power flow, fault current, stability and relay calculation etc. Usually, the impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, the impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistances. Therefore, if there is a fault in cable system, these terms will severely be caused many errors for calculating impedance. In this paper, the line impedance is measured in a power system of underground cables, and is analyzed by a generalized circuit analysis program, EMTP(Electromagnetic Transient Program), for comparison with the measured value. These analysis results are considered to become foundation of impedance calculation for underground cables.

  • PDF

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

Electrical property analysis of Organic Light Emitting Diodes using impedance spectroscopy (임피던스 분석법을 이용한 유기발광 다이오드의 전기적 특성 분석)

  • Park, Jae-Il;Park, Hyun-Jun;Nam, Eun-Kyung;Jung, Dong-Geun;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.452-453
    • /
    • 2007
  • In this work, enhanced simulation is proposed by using impedance spectroscopy. The impedance spectroscopy is one of the popular methods to measure the electrical property of Organic Light Emitting Diodes. The results show that the equivalent circuit needs a inductance element linked by serial connection and the element of resistance is more important role to decide the electrical property.

  • PDF

Microsystems for Whole Blood Purification and Electrophysiological Analysis

  • Han, Arum;Han, Ki-Ho;Mohanty Swomitra K.;Frazier A. Bruno
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the development of a microsystem for whole blood purification and electrophysiological analysis of the purified cells. Magnetophoresis using continuous diamagnetic capture (DMC) was utilized for whole cell purification and electrical impedance spectroscopy (EIS) was utilized for electrophysiological analysis of the purified cells. The system was developed on silicon and plastic substrates utilizing conventional microfabrication technologies and plastic microfabrication technologies. Using the magnetophoretic microseparator, white blood cells were purified from a sample of whole blood. The experimental results of the DMC microseparator show that 89.7% of the red blood cells (RBCs) and 72.7% of the white blood cells (WBCs) could be continuously separated out from a whole blood using an external magnetic flux of 0.2 T. EIS was used as a downstream whole cell analysis tool to study the electrophysiological characteristics of purified cells. In this work, primary cultured bovine chromaffin cells and human red blood cells were characterized using EIS. Further analysis capabilities of the EIS were demonstrated by successfully obtaining unique impedance signatures for chromaffin cells based on the whole cell ion channel activity.

Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

  • Kim, Pil-Jong;Kim, Hong-Gee;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • Objectives: The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). Materials and Methods: The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results: Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions: Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

Optimized Design Technique of a Differential Pair Having 2 Drop Configuration through Impedance Analysis (2 Drop 구조를 가지는 Differential Pair의 Impedance 해석 및 설계 방안)

  • Bae, Min-Ji;Kim, Yoon-Jung;Choi, Ung;Yang, Kook-Bo;Kim, Young-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • In this paper, impedance analysis of a differential pall having 2 drop configuration is performed using the reflection theory and verified by circuit simulator (Ansoft designer). Through the impedance analysis, it was possible to understand the signal transmission at a differential pall, and an optimized 2 drop design technique of a differential pair could be developed. When compared with the conventional design, the proposed design shows a good signal integrity and has much less design restrictions.

Analysis of Lower Leg Movement Using Bio-impedance Technique (바이오 임피던스를 이용한 하지 운동분석)

  • Song, C.G.;Song, C.H.;Lee, M.G.;Kim, S.C.;Kim, J.C.;Seo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.414-417
    • /
    • 2002
  • This paper describes the possibility of analyzing gait pattern from the variation of the lower leg electrical impedance. This impedance is measured by the four-electrode method. Two current electrodes are applied to the thigh and foot., and two potential electrodes are applied to the lateral aspect, medial aspect, and posterior position of lower leg. We found the optimal electrode position for knee and ankle joint movements based on high correlation coefficient, least interference, and maximum magnitude of impedance change. From such features of the lower leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level.

  • PDF

Impedance Spectroscopy Analysis of Hydration in Ordinary Portland Cements Involving Chemical Mechanical Planarization Slurry

  • Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.260-265
    • /
    • 2012
  • Impedance spectroscopy was used to monitor the hydration in the electrical/dielectric behaviors of chemical mechanical planarization (CMP)-blended cement mixtures. The electrical responses were analyzed using their equivalent circuit models, leading to the separation of the bulk and electrode based responses. The role of the CMP slurry was monitored as a function of the relative compositions of the CMP-blended cements, i.e. water, CMP slurry, and ordinary Portland cement. The presence of $Al_2O_3$ nanocrystals in the CMP slurries appeared to accelerate the hydration process, along with a more tortuous microstructure in the hydration, with enhanced hydration products. The frequency-dependent impedance spectroscopy was proven to be a highly efficient approach for evaluating the electrical/dielectric monitoring of the change in the pore structure evolution that occurs in CMP-blended cements.

Rejecting Interference in Electrical Impedance Measurements by Using Spread Spectrum Technique (전기 임피던스를 측정할 때 외부 간섭을 제거하기 위한 대역확산 기술의 적용)

  • Kang, Hyun-Kag;Hwang, In-Duk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.195-197
    • /
    • 2006
  • When we measure electrical impedance of a small object, such as an electronic component, external interference or jamming signal can be rejected by shielding the object. However, when we measure impedance of a large object, such as a human body, shielding is not easy and severe error due to the external interference could be introduced. In this paper, spread spectrum technique applicable to bioimpedance measurements for rejecting external interference without shielding is introduced. The improvement in signal-to-jamming ratio by the spread spectrum technique was experimentally confirmed.

Controllable Harmonic Generating Method for Harmonic Impedance Measurement of Traction Power Supply Systems Based on Phase Shifted PWM

  • Liu, Qiujiang;Wu, Mingli;Li, Jing;Zhang, Junqi
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1140-1153
    • /
    • 2018
  • The harmonic impedance characteristic of a traction power supply system (TPSS) is necessary for taking actions to suppress the high-order harmonic resonances caused by AC electric locomotives. This paper proposes a controllable harmonic generating method (CHGM) for measuring the TPSS harmonic impedance by injecting harmonic disturbances of different frequencies and amplitudes into the TPSS. This method applies phase shifted pulse-width modulation (PSPWM) and ensures that the undesired sideband harmonics can be negligible while the desired harmonic is both controllable and adjustable. Multiple harmonics can be emitted at the same time. The implementation of the method is also presented. Simulations are carried out to validate the performance of the proposed method. Finally, experimental results on a 5 H-bridge converters platform verified the effectiveness and feasibility of the proposed method.