Browse > Article

Microsystems for Whole Blood Purification and Electrophysiological Analysis  

Han, Arum (School of Electrical and Computer Engineering Georgia Institute of Technology)
Han, Ki-Ho (School of Electrical and Computer Engineering Georgia Institute of Technology)
Mohanty Swomitra K. (School of Electrical and Computer Engineering Georgia Institute of Technology)
Frazier A. Bruno (School of Electrical and Computer Engineering Georgia Institute of Technology)
Publication Information
Abstract
This paper presents the development of a microsystem for whole blood purification and electrophysiological analysis of the purified cells. Magnetophoresis using continuous diamagnetic capture (DMC) was utilized for whole cell purification and electrical impedance spectroscopy (EIS) was utilized for electrophysiological analysis of the purified cells. The system was developed on silicon and plastic substrates utilizing conventional microfabrication technologies and plastic microfabrication technologies. Using the magnetophoretic microseparator, white blood cells were purified from a sample of whole blood. The experimental results of the DMC microseparator show that 89.7% of the red blood cells (RBCs) and 72.7% of the white blood cells (WBCs) could be continuously separated out from a whole blood using an external magnetic flux of 0.2 T. EIS was used as a downstream whole cell analysis tool to study the electrophysiological characteristics of purified cells. In this work, primary cultured bovine chromaffin cells and human red blood cells were characterized using EIS. Further analysis capabilities of the EIS were demonstrated by successfully obtaining unique impedance signatures for chromaffin cells based on the whole cell ion channel activity.
Keywords
Blood Cell Separator; Diamagnetic Capture (DMC); Magnetophoresis; Electrical Impedance Spectroscopy (EIS); Electrophysiology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Svobada, Journal of Magnetism and Magnetic Materials, vol. 220, pp. L103-105, 2000   DOI   ScienceOn
2 A. S. Bahaj, J. H. P. Watson, and D. C. Ellwood, IEEE Transactions on Magnetics, vol. 25, pp. 3809-3811, 1989   DOI
3 M. D. Graham, Journal of Applied Physics, vol. 52, pp. 2578-2580, 1981   DOI
4 K.-H. Han, R. D. McConnell, J. P. Ferrance, J. P. Landers, and A. B. Frazier, Tech. Dig. of Solid-State Sensor and Actuator, pp. 180-183, 2004
5 E. Kelemen, Physiopathology and Therapy of Human Blood Diseases (International Series of Monographs in Pure and Applied Biology. Division: Modern Trends in Physiological Sciences, Vol. 30): Pergamon Press Ltd., 1969
6 D. Melville, F. Paul, and S. Roath, IEEE Transactions on Magnetics, vol. MAG-11, pp. 1701-1704, 1975   DOI
7 D. Melville, F. Paul, and S. Roath, IEEE Transactions on Magnetics, vol. MAG-18, pp. 1680-1685, 1982   DOI
8 K. Ikuta, K. Hirowatari, and T. Ogata, The 7th Annual International Conference on MicroElectro Mechanical Systems (MEMS 94), pp. 1-6, 1994
9 D. Melville, F. Paul, and S. Roath, Nature, vol. 255, pp. 706, 1975   DOI   ScienceOn
10 H. Kolm, J. Oberteuffer, and D. Kelland. Scientific American, vol. 11, pp. 46-54, 1975
11 E. Racila, D. Euhus, A. J. Weiss, C. Rao, J. McConnell, L. W. M. M. Terstappen, and J. W. Uhr, Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 4589-4594, 1998   DOI
12 M. R. Parker, Physics in Technology, vol. 12, pp. 263-268, 1981   DOI   ScienceOn
13 R. Gomez, M. R. Ladisch, A. K. Bhunia, and R. Bashir, Mat. Res. Soc. Symp. Proc., pp. U461-U466, 2002
14 R. Pethig, Critical Reviews in Biotechnology, vol. 16, pp. 331-348, 1996   DOI
15 J. Oberteuffer, IEEE Transactions on Magnetics, vol. 10, pp. 223-238, 1974   DOI
16 M. Cristofanilli and et.al, New England Journal of Medicine, vol. 351, pp. 781-7991, 2004   DOI   ScienceOn
17 R. Gomez, R. Bashir, A. Sarikaya, M. R. Ladisch, J. Sturgis, J. P. Robinson, T. Geng, A. K. Bhunia, H. L. Apple, and S. Wereley, Biomedical Microdevices, vol. 3, pp. 201-209, 2001   DOI   ScienceOn
18 G. R. Langereis, W. Olthuis, and P. Bergveld, The 9th International Conference on Solid-State Sensors and Actuators (Transducers 97), pp. 543-546, 1997
19 P. V. Gerwen, W. Laureys, G. Huyberechts, M. O. D. Beeck, and K. Baert, The 9th International Conference on Solid-State Sensors and Actuators (Transducers 97), pp. 907-910, 1997
20 S. K. Mohanty, S. K. Ravula, K. Engisch, and A. B. Frazier, Micro Total Analysis Systems, pp. 838-840, 2002
21 M. Zborowski, G. R. Ostera, L. Moore, S. Milliron, J. J. Chalmers, and A. N. Schechter, Biophysical Journal, vol. 84, pp. 2638-2645, 2003   DOI
22 Y. Huang, N. Chen, J. Borninski, and B. Rubinsky, The 16th Annual International Conference on Microelectromechanical Systems (MEMS 2003), pp. 403-406, 2003
23 S. Gawad, S. Metz, L. Schild, and P. Renaud, Micro Total Analysis Systems 2001, pp. 253-255, 2001
24 S. Gawad, M. Wuthrich, L. Schild, O. Dubochet, and P. Renaud, The 11th International Conference on Solid-State Sensors and Actuators (Transducers 2001), Munich, Germany, pp. 1190-1193, 2001
25 H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, IEEE Journal of Microelectromechanical Systems, vol. 8, pp. 50-57, 1999   DOI   ScienceOn
26 M. E. Valentinuzzi, J. Morucci, and C. J. Felice, Critical Reviews in Biomedical Engineering, vol. 24, pp. 353-466, 1996
27 R. Pethig, Dielectric and Electronic Properties of Biological Materials: John Wiley & Sons, 1979
28 J. Morucci, M. E. Valentinuzzi, B. Rigaud, C. J. Felice, N. Chauveau, and P. Marsili, Critical Reviews in Biomedical Engineering, vol. 24, pp. 257-351, 1996
29 K.-H. Han and A. B. Frazier, Journal of Applied Physics, vol. 96, pp. 5797-5802, 2004   DOI
30 M. Takaysau, D. R. Kelland, and J. V. Minervini, IEEE Transactions on Applied Superconductivity, vol. 10, pp. 927-930, 2000   DOI   ScienceOn
31 M. Takayasu, N. Duske, S. R. Ash, and F. J. Friedlaender, IEEE Transactions on Magnetics, vol. MAG-18, pp. 1520-1522, 1982   DOI