• Title/Summary/Keyword: Electrical fault

Search Result 3,416, Processing Time 0.024 seconds

Operational Method of Superconducting Fault Current Limiter with Reduction Function of Asymmetric Fault Current (비대칭 고장전류 저감 기능을 갖는 초전도 한류기 동작 방안)

  • Kim, Chang-Hwan;Seo, Hun-Chul;Kim, Kyu-Ho;Kim, Chul-Hwan;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.56-62
    • /
    • 2014
  • When fault currents contain decaying DC offset, the peak value of the fault current in the first cycle of the fault period is higher than the fault current during the steady-state period. To reduce the asymmetric fault current, this paper proposes an operation scheme using the series connection of two hybrid type Superconducting Fault Current Limiters (SFCLs) : an auxiliary SFCL and a main SFCL. The proposed method calculates the fault angle by comparing the zero-crossing time with fault detection time. According to the fault angle calculated, an auxiliary SFCL operates to reduce an asymmetric fault current during half a cycle after fault occurrence. After this process, the fault current is limited by a main SFCL. To confirm the usefulness of the proposed method, case studies using Electro-Magnetic Transients Program (EMTP)/Alternative Transient Program (ATP) Draw are perfomed.

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

A Study on Improving of Fault Recognition Method in Distribution Line (배전선로 고장인지 방식에 관한 연구)

  • Lee, Jin;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.65-69
    • /
    • 2020
  • The aim of this study is to improve the fault decision ability of FRTU (Feeder remote terminal unit) in DAS (Distribution automation system). FRTU uses the FI (Fault indicator) algorithm based on fault current pickup and operation of the protection device. Even if the inrush current flows or the protection device is sensitive to the transient current, FRTU may indicate incorrect fault information. To address these problems, we propose an improved fault recognition algorithm that can be applied to FRTU. We will detect a specific wave that is indicative of a fault, and use this information to identify a fault wave. The specific wave-detection algorithm is based on the duration and periodicity of the voltage, current, and harmonic variations. In addition, we propose fault recognition algorithms using voltage factor variation analysis and DWT (Discrete wavelet transform). All the wave data used in this study were actual data stored in FRTU.

The Study on The Complex Composition By SFCL and Power Equipments for Fault Detection in HVDC Line (HVDC 선로 내 초전도 한류기와 전력기기들의 복합 구성을 통한 고장 검출에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1113-1118
    • /
    • 2018
  • Protection in HVDC(High Voltage Direct Current) have the very fast velocity of fault detection. Because Fault in HVDC has the fast propagation, large currents, high interruption cost. The focus to velocity caused possibility of errors like a detection error like a high impedance fault. In this paper, Proposed complex composition for get the reliability and velocity. That used SFCL(Super Conducting Fault Current Limiter), Protection Zone and DTS(Distributed Temperature Sensing). The SFCL was detect the fault by quench and DTS&Protection Zone were perceive the detect by variation too. To examine the proposed method, PSCAD/EMTDC simulated. The results of simulation, proposed methods could the detect of fault to whole HVDC line. And that improved the reliability of fault clearing.

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

Diagnosis Methods for IGBT Open Switch Fault Applied to 3-Phase AC/DC PWM Converter

  • Im, Won-Sang;Kim, Jang-Sik;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 2012
  • Fault diagnosis technique of electrical drives is becoming more and more important, since voltage fed converter system has become industrial standard in many applications. Many studies have been conducted an inverter fault diagnosis for induction motors. However, there are few researches about fault diagnosis of 3-phase ac/dc PWM (Pulse Width Modulation) converter compared to the dc/ ac inverter. The ac/dc converter is the opposite of dc/ac inverter at current flow. Also, inverter and converter have different current patterns under the same condition of IGBT (Insulated gate bipolar transistor) open switch fault. Therefore, it is difficult to apply intact diagnosis methods of inverter to the converter. This paper proposes modified fault detection methods for IGBT open switch fault in 3-phase ac/dc PWM converter by modifying established fault diagnostic methods for dc/ac inverters.

A Method for Offline Inter-Turn Fault Diagnosis of Interior Permanent Magnet Synchronous Motor through the Co-Analysis (연동해석을 통한 영구자석 동기전동기의 오프라인 Inter-Turn 고장진단법)

  • Cho, Sooyoung;Oh, Ye Jun;Lee, GangSeok;Bae, Jae-Nam;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.365-373
    • /
    • 2018
  • In this paper, inter-turn fault diagnosis of the interior permanent magnet synchronous motor (IPMSM) is performed in offline state by linking the finite element analysis (FEA) tool and control simulation tool. In order to diagnose the inter-turn fault, it is important to select the current value to determine the fault. First, the basic principles for inter-turn fault diagnosis of IPMSM are explained and co-analysis model for fault diagnosis is constructed. Further, in order to select the appropriate high frequency voltage, the change of the current value to be judged as failure was analyzed at various voltage and frequency conditions, and the change of the current value according to the number of the failed windings was analyzed. Finally, the current value to be judged as failure is selected.

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.