• Title/Summary/Keyword: Electrical energy generation

Search Result 1,334, Processing Time 0.025 seconds

Generation Rescheduling Priority using Transient Energy Margin Sensitivity (과도에너지 마진의 감도를 이용한 발전력 재배분의 Priority)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1086-1090
    • /
    • 2011
  • This paper presents a method to evaluate generation rescheduling priority using transient energy margin sensitivity for power system operation. A change in any of the functional parameters obviously causes a change in the energy margin. Especially the energy margin sensitivity is evaluated for change with respect to generation. For a given contingency, the energy margin is computed and the respective sensitivities are also computed. It is possible to rank the sensitivities and thereby determine the generators which will affect the energy margin most and hence affect the stability (instability) of the system. The sign of the sensitivity indicates the direction of change in generation for a given change in energy margin.

Development of combined generation systems that power storage apparatus is applied (동력저장장치가 적용된 복합발전시스템의 개발)

  • Lee, Jeong-Il;Seo, Jang-Soo;Kang, Byung-Bog;Cha, In-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • The developments of the solar and the wind power energy are neccessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

Compensation of Power Fluctuations of PV Generation System by SMES Based on Interleaving Technique

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1983-1988
    • /
    • 2015
  • This paper proposes the enhanced application of superconducting magnetic energy storage (SMES) for the effective compensation of power fluctuations based on the interleaving technique. With increases in demand for renewable energy based photovoltaic (PV) generation system, the output power fluctuations from PV generation system due to sudden changes in environmental conditions can cause serious problems such as grid voltage and frequency variations. To solve this problem, the SMES system is applied with its superior characteristics with respect to high power density, fast response for charge and discharge operations, system efficiency, etc. In particular, the compensation capability is effectively improved by the proposed interleaving technique based on its parallel structure. The dynamic performance of the system designed using the proposed method is evaluated with several case studies through time-domain simulations.

Development of Black Box for EV Charging Infra based on Solar Power Generation and ESS (태양광발전 및 ESS 기반 전기차 충전인프라용 블랙박스 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.160-167
    • /
    • 2018
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

A Study on the Estimation of Optimal ESS Capacity Considering REC Weighting Scheme (REC 가중치를 고려한 최적 ESS 용량 산정에 관한 연구)

  • Lee, Sungwoo;Kim, Hyoungtae;Shin, Hansol;Kim, Tae Hyun;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1009-1018
    • /
    • 2018
  • As the generation of renewable energy increases rapidly, the stability of the grid due to its intermittency becomes a problem. The most appropriate way to solve this problem is to combine and operate the renewable generators with the ESS(Energy Storage System). However, since the revenues of operating the ESS are less than the investment cost, many countries are implementing various incentive policies for encouraging investment of the ESS. In this paper we estimated optimal capacity of the ESS to maximize profits of renewable energy generation businesses under the incentive policy of Korea and analyzed the impact of the incentive policy on the future electric power system of Jeju island. The simulation results show that the incentive policy has significantly improved the profitability of the renewable energy businesses generation business. But the volatility of the net demand has increased as the energy stored in the ESS is discharged intensively at the time of the incentive application.

Operation Scheduling of Industrial Cogeneration System with Each other Generation Mode (서로다른 발전방식으로 운전되는 산업용 열병합발전시스템의 최적운전계획 수립)

  • Jeong, Ji-Hoon;Lee, Jong-Beom;Oh, Sung-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.354-356
    • /
    • 2000
  • This paper describes the strategy of a daily optimal operational scheduling on cogeneration systems with each other generation mode. The cogeneration systems consists of three generators. auxiiiary devices which are three auxiliary boilers, two waste boilers and three sludge incinerators. One unit that using the back pressure turbin generates the electrical and the thermal energy. The other two units that using the extraction condensing turbine generate the energy. Auxiliary devices operate to supplement the thermal energy to the thermal load with three units. The cogeneration system has a large capacity which is able to supply enough the thermal energy to the thermal load, however the electric power generated is insufficient to satisfy the electrical load. Therefore the insufficient electric energy is supplemented by buying electrical energy from the utility. Simulation was carried out using optimization toolbox. The result reveals that the proposed modeling and strategy can be effectively applied to cogeneration systems with each other generation mode.

  • PDF

Voltage-Current Characteristics of Electrical Discharge Method for Hydrogen Generation (전기방전에 의한 수소제조방법의 전압-전류특성)

  • Choi, Y.M.;Kang, G.J.;Cha, S.Y.;Lee, W.M.
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1996
  • Hydrogen generation by electrical discharge through metal/water system is a viable method for on-demand applications. But its success depends on high energy efficiency defined as the ratio of the amount of consumed metal for a complete reaction with water to the electrical energy input. To improve the energy efficiency the electrical discharge has to sustain the hydrogen generation reaction with a minimal energy dissipation. Some experimental results on the discharge voltage-current profiles are reported and discussed.

  • PDF

Fuel Cell Inverter Operation for Distributed Generation of simulation (연료전지의 인버터 운전 시뮬레이션)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.170-174
    • /
    • 2007
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to utility, it needs both a step up converter and an inverter. The step up converter makes DC link and the inverter changes DC to AC. In this paper full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

  • PDF

Power Output Control of Wind Generation System Through Energy Storage System and STATCOM (에너지저장장치 및 STATCOM을 이용한 풍력발전시스템의 출력제어 기법)

  • Kim, Jong-Yul;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1718-1726
    • /
    • 2010
  • Utilization of renewable energy is becoming increaingly important from the viewpoints of environmental protection and conservation of fossil fuel. However, the generating power of renewable energy is always fluctuating due to the environmental status. This paper presents a scheme for supervisory control of wind generation system with the energy storage and STATCOM to reduce the power variation. In this paper, we especially concentrate on constant power output control of wind generation system. In order to achieve this purpose, the coordinated control strategy between different types of energy storage system and reactive power compensation device. The proposed control scheme has been validated by PSCAD/EMTDC simulation. As a result, the proposed scheme can handle the power output of wind generation system with a constant value.