• 제목/요약/키워드: Electrical distribution

검색결과 6,166건 처리시간 0.033초

소형 열병합 발전설비가 연계된 배전계통의 순시전압변동 (Momentary Voltage Dips in the Power Distribution System Interconnected with Cogeneration Facilities (COGN))

  • 최준호;김재철;정성교;김대원;한성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1088-1090
    • /
    • 1998
  • The cogeneration facilities (COGN) into the power distribution system can cause operational problems - reenergization of distribution feeders under repair by utility personnel, voltage variation and regulation because of output power of COGN, and lost of coordination at emergency state - on an electrical utility system. This paper deals with momentary voltage dips as the parallel interconnection operation of COGN in the power distribution system. PSCAD/EMTDC simulation tool is used to show the behavior of momentary voltage dips. In addition, restraint solution for momentary voltage variation is presented.

  • PDF

정전비용과 신뢰도 분석을 통한 분할 개폐기의 적정 자동화율 도출 알고리즘에 관한 연구 (Study on the algorithm for the Reasonable Switch Automation Rate with Customer Interruption Cost and Reliability Evaluation)

  • 채희석;신희상;조성민;문종필;김재철
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.467-473
    • /
    • 2013
  • The addition of disconnect switches to a distribution feeder or the replacement of the manual switches with the automatic switches do, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder and reducing the outage section. However, the improvement of reliability in power distribution system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we suggest the algorithm for determining the reasonable switch automation rate in the power distribution system. We evaluate the customer interruption cost and reliability for several cases - these cases relate with the switch automation rate - in the domestic metropolitan power distribution system, estimate the effectiveness of changing the manual switch to automatic switch quantitatively. These results can help the determining on the disconnect switch's automation rate.

신뢰성이 향상된 배전급 피뢰기 설계 기술의 동향 (Trend in New Distribution Class Arrester Ground Lead Disconnector Design)

  • 이주홍;윤주호;김인희;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.541-542
    • /
    • 2007
  • The paper also introduces a new Distribution Class ground lead disconnector design that not only extends the claimable detonation range well below the 20 amps specified in industry standards, but is very durable when exposed to severe arrester durability tests. Finally. this paper shows how this next generation disconnector interacts with the connected arrester to improve the overvoltage withstand capability of the arrester assembly. The interaction of the disconnector grading capacitor with the series-connected arrester metal oxide disc elements actually improves the arrester assembly temporary overvoltage withstand capability, making the design less vulnerable to TOV failures. Since the vast majority of distribution class arresters are sold domestically with ground lead disconnectors, this design improvement in the disconnector to improve detonation reliability also translates into a significantly improved distribution class arrester design.

  • PDF

An Adaptive Setting Method for the Overcurrent Relay of Distribution Feeders Considering the Interconnected Distributed Generations

  • Jang Sung-Il;Kim Kwang-Ho;Park Yong-Up;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Lee Seung-Jae;Oshida Hideharu;Park Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.357-365
    • /
    • 2005
  • This research investigates the influences of distributed generations (DG), which are interconnected to the bus by the dedicated lines, on the overcurrent relays (OCR) of the neighboring distribution feeders and also proposes a novel method to reduce the negative effects on the feeder protection. Due to the grid connected DG, the entire short-circuit capacity of the distribution networks increases, which may raise the current of the distribution feeder during normal operations as well as fault conditions. In particular, during the switching period for loop operation, the current level of the distribution feeder can be larger than the pickup value for the fault of the feeder's OCR, thereby causing the OCR to perform a mal-operation. This paper proposes the adaptive setting algorithm for the OCR of the distribution feeders having the neighboring dedicated feeders for the DG to prevent the mal-operations of the OCR under normal conditions. The proposed method changes the pickup value of the OCR by adapting the power output of the DG monitored at the relaying point in the distribution network. We tested the proposed method with the actual distribution network model of the Hoenggye substation at the Korea Electric Power Co., which is composed of five feeders supplying the power to network loads and two dedicated feeders for the wind turbine generators. The simulation results demonstrate that the proposed adaptive protection method could enhance the conventional OCR of the distribution feeders with the neighboring dedicated lines for the DG.

Reliability Evaluation of Electrical Distribution Network Containing Distributed Generation Using Directed-Relation-Graph

  • Yang, He-Jun;Xie, Kai-Gui;Wai, Rong-Jong;Li, Chun-Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1188-1195
    • /
    • 2014
  • This paper presents an analytical technique for reliability evaluation of electrical distribution network (EDN) containing distributed generation (DG). Based on hierarchical levels of circuit breaker controlling zones and feeder sections, a directed-relation-graph (DRG) for an END is formed to describe the hierarchical structure of the EDN. The reliability indices of EDN and load points can be evaluated directly using the formed DRG, and the reliability evaluation of an EDN containing DGs can also be done without re-forming the DRG. The proposed technique incorporates multi-state models of photovoltaic and diesel generations, as well as weather factors. The IEEE-RBTS Bus 6 EDN is used to validate the proposed technique; and a practical campus EDN containing DG was also analyzed using the proposed technique.

배전계통 전압/무효전력조정을 위한 새로운 전압/무효전력제어 방식 (A New Volt/Var Control of Substation for Distribution Volt/Var Regulation)

  • 최준호;김재철;손학식;임태훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper we proposed the on line volt/var control schemes of the load Tap Changer (LTC) transformer and shunt capacitor bank for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

Determination of the Distribution of the Preisach Density Function With Optimization Algorithm

  • Hong Sun-Ki;Koh Chang Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.258-261
    • /
    • 2005
  • The Preisach model needs a distribution function or Everett function to simulate the hysteresis phenomena. To obtain these functions, many experimental data obtained from the first order transition curves are usually required. In this paper, a simple procedure to determine the Preisach density function using the Gaussian distribution function and genetic algorithm is proposed. The Preisach density function for the interaction field axis is known to have Gaussian distribution. To determine the density and distribution, genetic algorithm is adopted to decide the Gaussian parameters. With this method, just basic data like the initial magnetization curve or saturation curves are enough to get the agreeable density function. The results are compared with experimental data and we got good agreements comparing the simulation results with the experiment ones.

루프운전 배전선로의 고장계산 방법 (A Fault Calculation Method for Loop Structured Distribution Feeders)

  • 황지희;임성일
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1633-1638
    • /
    • 2016
  • Loop system arrangement in the primary distribution system has been increased for higher reliability of power supply to the customer. This paper presents a new fault calculation method for the loop structured unbalanced distribution feeders. Mathematical modeling method of the distribution system and superposition principal based fault calculation procedures are provided. In order to establish feasibility of the proposed method, various case studies have been performed using Matlab power system toolbox.

Stochastic Modeling of Plug-in Electric Vehicle Distribution in Power Systems

  • Son, Hyeok Jin;Kook, Kyung Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1276-1282
    • /
    • 2013
  • This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.

상시개방점 양단전압 측정값을 이용한 배전선로 루프운전 가능 여부 판단 방법 (Loop Current Calculation based on Voltage Angle Difference at Tie Switch for Switching Plan Validation in Distribution System Operation)

  • 손주환;임성일
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.14-21
    • /
    • 2015
  • Distribution systems are operated in radial structure, but temporal loop structure could be founded the live load transfer. Main purposes of reconfiguration of distribution network are load balancing, loss minimization and voltage drop maintaining. In the loop structure, huge loop current can be flowed between two substations in case of large voltage angle difference. Protection devices of distribution line can be triped by this huge loop current. So, precise calculation of loop current is very important for secure switching. This paper proposes a novel calculation method of loop current using the voltage angle differences measured at the tie switches. Feasibility of the propose method has been verified by various case studies based on Matlab simulation.