• 제목/요약/키워드: Electrical conductivity and resistivity

검색결과 315건 처리시간 0.027초

PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성 (Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube)

  • 김정호;손권상;이민호
    • 공업화학
    • /
    • 제25권1호
    • /
    • pp.14-19
    • /
    • 2014
  • 본 연구에서는 탄소섬유(carbon fiber, CF)와 탄소나노튜브(carbon nanotube, CNT)를 포함하는 PMMA/PVDF 및 PET/PVDF 블렌드 나노복합재료를 이축성형 압출기를 이용하여 용융삽입법으로 제조하였다. SEM을 이용하여 PMMA/PVDF/CF/CNT 나노복합재료의 모폴로지를 관찰한 결과, CNT가 matrix에서 효과적으로 분산되지 못한 반면 PET/PVDF/CF/CNT 나노복합재료에서는 CNT가 잘 분산된 것으로 관찰되었다. 상분리된 PET/PVDF 블렌드에서 CNT가 PET 상에 효과적으로 분산된 것으로 보였는데 이는 PET의 페닐렌기와 CNT 표면의 그라파이트 시트가 ${\pi}-{\pi}$ interaction에 의한 것으로 판단되었다. 또한 CF도 PET와의 계면 접착성이 우수한 것으로 나타났다. PET/PVDF/CF 나노복합재료의 전기전도도는 CNT를 첨가함으로써 증가하였으나 PMMA/PVDF/CF 나노복합재료에 CNT를 첨가한 경우 전기전도도가 향상되지 않았다. 모폴로지 관찰결과에서 CNT의 분산 정도는 전기전도도 물성 결과와 일치하였다. DSC 분석 결과, PET/PVDF/CF/CNT 나노복합재료에서는 결정화 온도가 증가하였는데, 이는 CF 및 CNT가 PET의 결정화를 촉진 시키는 조핵제 역할을 하기 때문인 것으로 보였다. 굴곡물성 결과, PET/PVDF/CF/CNT 나노복합재료에서 PET와 CF의 친화성이 우수하여 굴곡탄성률이 크게 증가하였다.

Growth of zinc oxide thin films by oxygen plasma-assisted pulsed laser deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.208-208
    • /
    • 2010
  • Zinc oxide (ZnO) is a functional material with interesting optical and electrical properties, a wide band gap (more than 3.3 eV), a high transmittance in the visible light region, piezoelectric properties, and a high n-type conductivity. This material has been investigated for use in many applications, such as transparent electrodes, blue light-emitting diodes, and ultra-violet detector. ZnO films grown under low oxygen pressure by thin film deposition methods show low resistivity and large free electron concentration. Therefore, reducing the background carrier concentration in ZnO films is one of the major challenges ahead of realizing high-performance ZnO-based optoelectronic devices. In this study, we deposited ZnO thin films on sapphire substrates by pulsed laser deposition (PLD) with employing an oxygen plasma source to decrease the background free-electron concentration and enhance the crystalline quality. Then, the substrate temperature was varied between 200 'C to 900 'C The vacuum chamber was initially evacuated to a pressure of $10^{-6}$ Torr, and then a pure $O_2$ gas was introduced into the chamber and the pressure during deposition was maintained at $10^{-2}$ Torr. Crystallinity and orientation of ZnO films were investigated by X-ray diffraction (XRD). The film surface was analyzed with atomic force microscope (AFM). And electrical properties were measured at room temperature by Hall measurement.

  • PDF

기계적 합금화로 제조된 Fe0.92Mn0.08Si2의 상변화 및 열전 특성 (Phase Transformation and Thermoelectric Properties of Fe0.92Mn0.08Si2 Prepared by Mechanical Alloying)

  • 김영섭;조경원;김일호;어순철;이영근
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.292-296
    • /
    • 2003
  • In an attempt to enhance phase transformation and homogenization of Mn-doped $FeSi_2$, mechanical alloying of elemental powders was applied. Cold pressing and sintering in vacuum were carried out to produce a dense microstructure, and then isothermal annealing was employed to induce a phase transformation to the $\beta$-$FeSi_2$semiconductor. Phase transitions in this alloy system during the process were investigated by using XRD, EDS and SEM. As-milled powders after 100 h of milling were shown to be metastable state. As-sintered iron silicides consisted of untransformed mixture of $\alpha$-$Fe_2$$Si_{5}$and $\varepsilon$-FeSi phases. $\beta$-$FeSi_2$phase transformation was induced by subsequent isothermal annealing at $830^{\circ}C$, and near single phase of $\beta$-$FeSi_2$was obtained after 24 h of annealing. Thermoelectric properties in terms of Seebeck coefficient, and electrical conductivity were evaluated and correlated with phase transformation. Seebeck coefficient electrical resistivity and hardness increased with increasing annealing time due to $\beta$ phase transformation.

폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰 (Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands)

  • 심민섭;주현태;김관수;김지수
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.525-534
    • /
    • 2014
  • 폐광 부지에서 발생하는 대표적인 환경 문제는 산성으로 오염된 지표수와 지하수, 적재된 폐광석 및 광미, 채굴 활동으로 야기된 지반침하 현상을 들 수 있다. 이 논문은 광해 유형에 따라 재해 및 오염영역을 효율적으로 탐지했던 지구물리탐사방법들을 고찰하는데 있다. 시험 자료로서 토양오염, 산성광산배수, 지반침하, 인공차수막 파손 및 광미/폐광석 적치장을 각각 대표하는 네 개의 폐광 부지를 선택하였다. 자료 검증을 위해 물리탐사자료는 자료의 유형에 따라 시추자료(코어 샘플, 물리검층, 토모그래피 등)와 물 자료(수소이온농도, 전기전도도, 중금속원소 등)와 비교하였다. 토양오염 탐지에 있어서 낮은 전기비저항 이상대는 특히 구리, 납, 아연의 중금속 농도가 높은 지역과 부합된다. 산성광산배수의 유동 경로는 자연전위 곡선에서 음의 전위 이상대, 전기비저항자료에서의 저비저항 이상대, 지하레이더 자료에서의 얕은 투과깊이 영역으로 탐지되었다. 채굴적은 전기비저항 단면에서의 저비저항 이상대, 탄성파토모그래피에서 낮은 속도 영역, 물리검층곡선의 복합해석으로 특징되며, 정확한 위치는 코어자료와 시추공영상자료에서 잘 확인되었다. 침출수 유동을 차단하기 위해 설치된 인공차수막의 파손 구간은 전기비저항 자료에서의 국부적인 이상대로 정확히 탐지되며 매립된 폐석더미는 고비저항 이상대와 저속도 이상대로 특징된다.

백금족 금속의 제련과 폐촉매의 리사이클링 (Smelting of Platinum Group Metals and Recycling of Spent Catalyst)

  • 손인준;손호상
    • 자원리싸이클링
    • /
    • 제30권3호
    • /
    • pp.18-29
    • /
    • 2021
  • 백금족 금속(Platinum Group Metals, PGMs)은 화학적 저항성은 물론 전기·열전도성이 뛰어나 촉매, 전자기기, 전극, 전기기기, 연료전지, 고온 소재 등 광범위한 응용 분야에 사용된다. 일반적으로 백금족 금속은 구리와 니켈의 황화광과 관련되어 있으므로 백금족 금속의 상대적인 농도에 따라 주산물로 생산되거나 니켈과 구리의 부산물로 생산된다. 특히 이러한 자원들은 남아프리카와 러시아 같은 나라들에 편재되어 있으며, 백금족 금속의 연간 공급량은 500톤 미만이다. 이와 같은 백금족 금속의 한정된 공급량을 고려하면 향후에 백금족 금속의 공급 리스크가 증가할 것이다. 따라서 폐촉매와 같은 2차 자원으로부터 백금족 금속을 회수하는 것이 매우 중요하다. 본 논문에서는 백금족 금속의 제련 기술과 리사이클링 기술에 대하여 고찰하였다.

Thermoelectric characteristics depend on compositions of $Bi_2Te_3$ in mixed alloy with PbTe

  • Jung, Kyoo-Ho;Yim, Ju-Hyuk;Kim, Jin-Sang
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.11-11
    • /
    • 2010
  • In order to design for nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system were investigated for their micro structure and thermal properties. For this synthesis the liquid alloys were cooled by water quenching method. The micro structure images were taken by using electron probe micro analyzer (EPMA). Dendritic and lamellar structures were clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. It was confirmed that a metastable compounds is $PbBi_2Te_4$ in the The $Bi_2Te_3$-PbTe system. The change in the composition increasing $Bi_2Te_3$ ratio causes to change structure from dendritic to lamellar. Seebeck coefficient of alloys 5 which the mixture rate of $Bi_2Te_3$ is 83% was measured as the highest value. In contrast, the others decreased by increasing $Bi_2Te_3$. n-type characteristics was observed at all condition except alloy 6 which $Bi_2Te_3$ ration is 91%. The power factors of all samples were calculated with Seebeck coefficient and resistivity. Also the thermal conductivity was measured by using laser flash analyzer (LFA). In this work, the microstructures and thermal properties have been measured as a function of ratio of $Bi_2Te_3$ in the $Bi_2Te_3$-PbTe system.

  • PDF

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

비정질 IZTO기반의 투명 박막 트렌지스터 특성 (Characteristics of amorphous IZTO-based transparent thin film transistors)

  • 신한재;이근영;한동철;이도경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구 (Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation)

  • 박혜윤;김현욱;송창은;지현준;최시경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

유연전자소자를 위한 차세대 유연 투명전극의 개발 동향 (Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices)

  • 김주현;천민우;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.