• Title/Summary/Keyword: Electrical circuit

Search Result 7,402, Processing Time 0.034 seconds

Wide Frequency Current Source Inverter (광역 주파수 전류원형 인버터)

  • 전성즙;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.927-935
    • /
    • 1994
  • Detailed analysis of the commutation circuit of the proposed wide-frequency current source inverter is given. In this inverter a spike-limit circuit and a precommutation circuit are used. The spike-limit circuit is intended to limit spike voltage which is arising during commutation time in a current source inverter, and the precommutation circuit to reuse the energy which flows from main inverter to spike-limit circuit during commutation time to aid commutation. Thus voltage stress of main thyristor is minimized. Since this inverter can be made up of thyristors for phase control, it has some advantage in high voltage and high power application.

Improvement of Circuit-Time Product through Analysis of Operating Time of Earth Leakage Circuit-Breakers (누전차단기의 트립 동작시간 분석을 통한 전류·시간적(積) 개선)

  • Kim, Ju-Chul;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.44-49
    • /
    • 2012
  • The earth leakage circuit-breakers installed to protect the human body against electrical shock have conventionally had a sensitivity current of 30 mA and an operating time of 30 ms or less. No reviews are found, however, on the operating time of the current conducting through the human body due to the electrical shock or ground fault. This paper measures the trip-operating time against the earth leakage under the condition of increased current as well as under the condition of rated sensitivity current of the earth leakage circuit-breakers. Further measurement with a prototype model showed an improved operating time of 16 ms or less under the condition of rated sensitivity current. It is expected that development of circuit-breakers with higher safety is possible if the performance of the electronic circuit can be improved.

Process-Variation-Adaptive Charge Pump Circuit using NEM (Nano-Electro-Mechanical) Relays for Low Power Consumption and High Power Efficiency

  • Byeon, Sangdon;Shin, Sanghak;Song, Jae-Sang;Truong, Son Ngoc;Mo, Hyun-Sun;Lee, Seongsoo;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • For some low-frequency applications such as power-related circuits, NEM relays have been known to show better performance than MOSFETs. For example, in a step-down charge pump circuit, the NEM relays showed much smaller layout area and better energy efficiency than MOSFETs. However, severe process variations of NEM relays hinder them from being widely used in various low-frequency applications. To mitigate the process-variation problems of NEM relays, in this paper, a new NEM-relay charge pump circuit with the self-adjustment is proposed. By self-adjusting a pulse amplitude voltage according to process variations, the power consumption can be saved by 4.6%, compared to the conventional scheme without the self-adjustment. This power saving can also be helpful in improving the power efficiency of the proposed scheme. From the circuit simulation of NEM-relay charge pump circuit, the efficiency of the proposed scheme is improved better by 4.1% than the conventional.

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

The Implementation of the system-on-board controllable the electrical fires due to ground fault, arc fault and overload (누전, 아크, 과부하에 의한 전기화재 제어 시스템 보드의 구현)

  • Kim, Byung-Cheul;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.419-424
    • /
    • 2011
  • The system-on-board detectable and controllable the electrical fires due to ground fault(GF), arc fault and overload is implemented. The system IC for controlling and preventing the electrical fires is available to this system. The GF detection circuit for detecting the electrical leakage current, the arc fault detection circuit and the overload detection circuit controllable the input voltage for flowing the overload current are designed. The GF detection circuit and the arc fault detection circuit are good operated to the electrical leakage current and the arc signal, respectively. It is confirmed that the overload detection circuit has shown no erratic operation with the noise or the load variation and is only operated at the overload condition.

Flyback type Snubber Circuit with di/dt Limiting Capability for IGCT in MV Wind Turbines

  • Lee, Kihyun;Song, Seunghoo;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.333-334
    • /
    • 2014
  • Converters employing IGCTs usually require di/dt snubber and Over Voltage Protection (OVP) circuit for the protection of IGCTs and fast diodes. In these IGCT-based converters, conventional di/dt snubber and OVP circuit dissipates a significant amount of power loss. To reduce this loss of conventional di/dt snubber and OVP circuit, this paper proposes a flyback type snubber circuit with di/dt limiting characteristic for IGCT-based converters in medium voltage wind turbines. This flyback type snubber circuit simply consists of a flyback type transformer and diode. The proposed circuit reduces loss and simplifies conventional di/dt snubber by adopting the flyback type transformer. Loss analysis of conventional di/dt snubber and OVP circuit is performed for the 3-level NPC type back-to-back VSC supplied from grid voltage of 6.9kV. The proposed flyback type snubber circuit can save the loss of conventional snubber circuit in the 3L-NPC type back-to-back VSC in multi-MW MV wind turbine. The proposed snubber circuit has a fewer number of components and improved efficiency leading to a reliable and efficient wind turbine systems.

  • PDF

A Novel Cell Balancing Circuit for Fast Charge Equalization (빠른 전하 균일화를 위한 새로운 구조의 셀 밸런싱 회로)

  • Park, Dong-Jin;Choi, See-Young;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • This study proposes an improved cell balancing circuit for fast equalization among lithium-ion (Li-ion) batteries. A simple voltage sensorless charge balancing circuit has been proposed in the past. This cell balancing circuit automatically transfers energy from high-to low-voltage battery cells. However, the circuit requires a switch with low on-resistance because the balancing speed is limited by the on-resistance of the switch. Balancing speed decreases as the voltage difference among the battery cells decrease. In this study, the balancing speed of the cell balancing circuit is enhanced by using the auxiliary circuit, which boosts the balancing current. The charging current is determined by the nominal battery cell voltage and thus, the balancing speed is almost constant despite the very small voltage differences among the batteries. Simulation results are provided to verify the validity of the proposed cell balancing circuit.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.