• Title/Summary/Keyword: Electrical Stimulation

Search Result 1,124, Processing Time 0.024 seconds

Effect of Joksamni combination on NADPH-diaphorase, neuronal Nitric Oxide Synthase, Neuropeptide Y and Vasoactive Intestinal Peptide in the cerebral cortex of Spontaneously Hypertensive Rat (족삼리(足三里) 배혈(配穴)에 따른 전침(電鍼)이 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase와 nNOS, NPY, VIP 신경세포(神經細胞)에 미치는 영향(影響))

  • Jung, In-gy;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.118-132
    • /
    • 2003
  • Objective: The aim of this study was to investigate the effects of Joksamni(ST36) combination on NAD PH-diaphorase, neuronal nitric oxide synthase(nNOS), neuropeptide Y(NPY) and vasoactive intestinal peptide (VIP) in the cerebral cortex of spontaneously hypertensive rat. Methods: The experimental groups were divided into four groups: Normal, Joksamni(ST36), Joksamni(ST36)+Eumneungcheon(SP9), and Joksamni(ST36)+Gokji(LI11). Needles were inserted into acupoints at the depth of 0.5cm with basic insertion method. Electroacupuncture was done under the condition of 2Hz electrical biphasic pulses with continuous rectangular wave lasting for 0.2ms until the muscles produced visible contractions. Such stimulation was applied continuously for 10 minutes, 1 time every 2 days for 10 sessions of treatments. Thereafter we evaluated changes in NADPH-d positive neurons histochemically and changes in nNOS, NPY and VIP positive neurons immunohistochemically. Results: The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in primary somatosensory cortex, visual cortex, auditory cortex, perirhinal cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group with the exception of primary somatosensory cortex. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in auditory cortex, perirhinal cortex, insular cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. The optical densities of NPY positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in primary motor cortex, primary somatosensory cortex, cingulate cortex as compared to the Joksamni (ST36) and Joksamni(ST36)+Eumneungcheon(SP9) groups. The optical densities of VIP positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group were significantly increased in all areas of cerebral cortex except for cingulate cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in auditory cortex, cingulate cortex, perirhinal cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. Conclusions: The result demonstrated that electroacupuncture on Joksamni(ST36) and its combination change the activities of the NO system and peptidergic system in the cerebral cortex of SHR and that acupoint combination is one of the important parameters for the effects.

  • PDF

Development and Expression of Porcine Embryos by Direct Injection of Sperm Treated with Exogenous DNA (외래유전자 도입정자를 이용한 돼지 체외성숙 난포란의 Intracytoplasmic Sperm Injection (ICSI) 후 후기 배로의 발달율과 외래유전자의 발현에 관한 연구)

  • 정기화;조성근
    • Journal of Embryo Transfer
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The main goal of this study was to produce transgenic porcine embryos by direct injection of sperm-mediated exogenous DNA. Spermatozoa (6$\times$10$^{6}$ sperms of final concentration) were mixed with pcDNA LAC Z (20 ng/$\mu$l) and subjected into electroporation (300~750 volts, 25 $\mu$F, 0.4 cm electrode). After sperm injection, the oocytes were activated electrically (1.7 KV/cm, 30$\mu$sec, single pulse) in 0.3 M mannitol solution or not. The sperm injected eggs were cultured in NCSU 23 medium (0.4% BSA) at 39$^{\circ}C$, 5% $CO_2$ in air fur 144 h. The rates of cleavage and development into blastocyst stage in activation group were significantly higher than those of non-activation group (79.6% and 24.1% vs. 46.3% and 14.4%, respectively, p<0.05). Control oocytes and shame injection were developed to blastocysts low (2.5%). Sixty five (27.1%) out of 240 embryos observed in activation and non-activation groups were showed positive by X-gal staining. However, all embryos in both groups were expressed partial or mosaic pattern. These results suggested that electrical stimulation far oocytes activation after sperm injection enhances the incidence of both fertilization and development fellowing sperm injection in the pig. Our study also suggested that sperm-mediated transfer of exogenous DNA by ICSI would be used as a valuable tool for the production of transgenic porcine embryos.

Effect of $K^+-channel$ Blockers on the $A_1-adenosine$ Receptor-Coupled Regulation of Electrically-Evoked Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리를 조절하는 $A_1-adenosine$ 수용체의 역할에 미치는 $K^+$ 통로 차단제의 영향)

  • Choi, Bong-Kyu;Kim, Sang-Hoon
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.301-309
    • /
    • 1996
  • Since it has been reported that the depolarization-induced NE release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the participation of $K^+-channel$ in the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30\;{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. 4AP $(1{\sim}30{\mu}M)$, a specific A-type $K^+-channel$ blocker, increased the evoked NE release in a dose-related fashion, and the basal rate of release is increased by 10 and $30{\mu}M$. TEA $(1{\sim}10{\mu}\;M)$, a nonspecific $K^+-channel$ blocker, increased the evoked NE release in a dose-dependent manner without affecting basal release. The adenosine effects were significantly inhibites by 3 ${\mu}M$ 4AP and 10 mM TEA treatment. 4AP $(30{\mu}M)-$ and TEA (10 mM)-induced increments of evoked NE release were completely abolished in $Ca^{++} free, but these were recoverd in low $Ca^{++} medium. And the effects of $K^+-channel$ blockers in low $Ca^{++} medium were inhibites and abolishes by $Mg^{++} (4 mM) adding and TTX $(0.3{\mu}M)$ adding medium, respectively. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by 4AP and TEA sensitive $K^+-channel$.

  • PDF

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Striatum

  • Kim, Do-Kyung;Kim, Hyeon-A;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various evidence suggest that indicate the $A_2$ adenosine receptor is present in the striatum, this study was undertaken to delineate the role of adenosine receptors on the striatal ACh release. Slices from the rat striatum were equilibrated with $[^3H]$choline and then the release amount of the labelled product, $[^3H]$ACh, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;Vcm^{-1}$, 2 min), was measured, and the influence of various agents on the evoked tritium outflow was investigated. And also, quantitative receptor autoradiography and drug-receptor binding assay were performed in order to confirm the presence and characteristics of $A_1$ and $A_2$ adenosine receptors in the rat striatum. Adenosine $(10{sim}100\;{mu}M)$ and $N^6$-cyclopentyladenosine (CPA, $1{sim}100\;{mu}M)$ decreased the $[^3H]$ACh release in a dose-dependent manner without changing the basal rate of release in the rat striatum. The reducing effects of ACh release by adenosine and CPA were abolished by 8-cyclopentyl-1,3-dipropy-Ixanthine (DPCPX, 2 ${mu}M$), a selective $A_1$, adenosine receptor antagonist, treatment. The effect of adenosine was potentiated markedly by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 ${mu}M$), a specific $A_2$ adenosine receptor antagonist. 2-P-(2-carboxyethyl)phenethylamimo-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680C), in concentrations ranging from 0.01 to 10 ${mu}M$, a recently introduced potent $A_2$ adenosine receptor agonist, increased the $[^3H]$ACh release in a dose related fashion without changing the basal rate of release. These effects were completely abolished by DMPX $(10\;{mu}M)$. In autoradiograrhy experiments, $[^3H]$2-chloro-$N^6$-cyclopentyladenosine ($[^3H]$ CCPA) bindings were highly localized in the hippocampus and the cerebral cortex. Additionally, lower levels of binding were found in the striatum. However, $[^3H]$CGS-21680C bindings were highly localized in the striatal region with the greatest density of binding found in the caudate nucleus and putamen. Lower levels of binding were also found in the nucleus accumbens and olfactory tubercle. In drug-receptor binding assay, binding of $[^3H]$ CCPA to $A_1$ adenosine receptors of rat striatal membranes was inhibited by CPA ($K_i$ = 1.6 nM) and N-ethylcarboxamidoadenosine (NECA, $K_i$ = 12.9 nM), but not by CGS-21680C ($K_i$ = 2609.2 nM) and DMPX ($K_i$ = 19,386 nM). In contrast, $[^3H]$CGS-21680C binding to $A_2$ denosine receptors was inhibited by CGS-21680C ($K_i$ = 47.6 nM) and NECA ($K_i$ = 44.9 nM), but not by CPA ($K_i$ = 2099.2 nM) and DPCPX ($K_i$ = 19,207 nM). The results presented here suggest that both types of $A_1$ and $A_2$ adenosine heteroreceptors exist and play an important role in ACh release in the rat striatal cholinergic neurons.

  • PDF

Interaction of Forskolin with the Effect of $N^6-Cyclopentyladenosine$ on $[^3H]-Acetylcholine$ Release in Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 $N^6-Cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Park, Hie-Man;Kang, Yeon-Wook;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • As it has been reported that the depolarization-induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of ACh release in this study. Slices from rat hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked by electrical stimulation $(3\;Hz,\;5\;Vcm^{-1},\;2\;ms,\;rectangular\;pulses)$, and the influence of various agents on the evoked tritium-outflow was investigated. $N^6-cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations ranging from 0.1 to $10\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without the changes of basal rate of release. 8-cyclopentyl-1,3-dipropylxanthine $(DPCPX,\;1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium-release. And the CPA effects were significantly inhibited by DPCPX $(2\;{\mu}M)$ pretreatment and the dose-response curve produced by CPA was shifted to the right. The responses to N-ethylmaleimide $(NEM,\;10\;&\;30\;{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the CPA effect were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.3 to $10\;{\mu}M$, increased the evoked ACh-release in a dose-dependent manner and the CPA effects were inhibited by forskolin. These results indicate that the $A_1-adenosine$ heteroreceptor plays an important role in ACh-release via nucleotide-binding protein Gi in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

Studies on the Interactions of $M_1-,M_2-receptors$ with Nicotinic Receptors in Rabbit Sympathetic Ganglia (가토 교감신경절에서 무스카린성 수용체 아형과 니코틴성 수용체의 상호작용에 대한 연구)

  • Kim, Jong-Keun;Rhu, Choon-Sik;Kang, Sam-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.171-179
    • /
    • 1992
  • Effects of a $M_1$ receptor antagonist, pirenzepine, a $M_2$ receptor antagonist, AF-DX116, and a nicotinic receptor antagonist, mecamylamine on the pressor responses to preganglionic sympathetic nerve stimulation (PNS) and McN-A-343 and DMPP in spinal (pithed) rabbits were investigated, in order to elucidate a functional role of $M_1$, $M_2$ and nicotinic receptors in ganglionic transmission. Pirenzepine and AF-DX116 selectively inhibited the McN-A-343-induced pressor response in chlorisondamine-treated rabbit and the BCh-induced bradycardia, respectively. Electrical stimulations of preganglionic sympathetic outflow at T8 level produced increases in blood pressure. Pirenzepine $(3\;{\mu}g/kg)$ significantly inhibited the PNS-induced pressor response and the degree of inhibition was not changed by increasing the doses to $100\;{\mu}g/kg$. AF-DX116 $(100\;{\mu}g/kg)$ had no effect on the PNS-induced pressor response. Mecamylamine inhibited the PNS-induced pressor response in a dose-dependent manner. The inhibitory action of mecamylamine was significantly augmented by combined-treatment with pirenzepine $(30\;{\mu}g/kg)$ but AF-DX116 $(100\;{\mu}g/kg)$ did not affect the inhibitory action of mecamylamine. McN-A-343 and DMPP elicited pressor response in the spinal rabbit. Pirenzepine and AF-DX116 dose-dependently inhibited the McN-A-343-induced pressor response but they did not affect DMPP-induced pressor response. Mecamylamine inhibited both pressor responses induced by McN-A-343 and DMPP. These results suggest that not only nicotinic receptors but also $M_1$ receptors play a facilitatory role in ganglionic transmission but $M_2$ receptors do not contribute the transmission in spinal (pithed) rabbits.

  • PDF

Early Changes after Death of Plaice, Paralichthys olivaceus Muscle -6. Effect of Killing Methods on Morphological Changes of Myofibrills and Histological Changes of Muscle- (넙치 (Paralichthys olivaceus)육의 사후조기변화 -6. 치사 방법이 근원섬유의 형태학적 및 육의 조직학적인 변화에 미치는 영향-)

  • CHO Young-Je;LEE Nam-Geoul;KIM Yuck-Yong;KIM Jae-Hyun;LEE Keun-Woo;KIM Geon-Bae;CHOI Young-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.327-334
    • /
    • 1994
  • This study was undertaken to clarify the effect of killing methods on the morphological and histological changes of plaice, Paralichthys olivaceus muscle at early stage after killing. Killed samples by the three different methods were stored at $5^{\circ}$, and the changes in breaking strength of muscle, morphological observation of myofibrils and histological observation of extracellular spaces through storage were monitored. Samples killed by electrifying in sea water showed the maximum value of breakin strength immediately after killing and then it dropped significantly(p<0.05) until 2.5hrs passed. Breaking strength of samples killed by spiking at the head instantly and dipping in sea water including anesthetic rose steadily over 10hrs and 15hrs after killing, respectively. In myofibrills prepared from dorsal muscles immediately after spiking at the head instantly, A-band, H-band, I-band, and Z-line in sarcomere were clearly distinguishable each other. Due to muscle contraction by electrical stimulation, it was impossible to distinguish H-band from I-band observed in sarcomere immediately after killing for samples killed by electrifying. But, in the cases of samples killed by spiking and dipping, H-band could be observed dimly until 10hrs and 15hrs storage. No extracellular space was observed among muscle cells immediately after spiking at the head instantly. Samples killed by spiking at the head instantly and dipping in sea water including anesthetic showed extracellular spaces among all muscle cells after 15hrs and 25hrs storage, respectively. The other hand, samples killed by electrifying in sea water (110V, 30sec.) showed a few extracellular spaces immediately after killing and then it showed extracellular spaces among all muscle cells after 2.5hrs storage.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Oh, Jae-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.263-272
    • /
    • 1994
  • Since it was been reported that the depolarization-induced ACh release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the ACh release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of ACh release in this study. Slices from rat hippocampus were equilibrated with $^3H-choline$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $0.3{\sim}300\;{\mu}M$, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by $DPCPX\;(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide $(10&30{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. PDB $(1{\sim}10\;{\mu}M)$, a specific protein kinase C (PKC) activator, increased, whereas PMB $(0.03{\sim}1\;mg)$, a PKC inhibitor, decreased the evoked ACh-release, and the adenosine effects were not affected by these agents. Nifedipine $(1\;{\mu}M)$, a $Ca^{2+}\;-channel$ blocker of dihydropyridine analogue, significantly inhibited the adenosine effect, but glibenclamide, a $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP $(100\;&\;300{\mu}M)$, a membrane-permeable analogue of cAMP, did not alter the ACh release, but adenosine effects were inhibited by pretreatment with large dose of 8-br-cAMP $(300\;{\mu}M)$. These results indicate that the decrement of the evoked ACh-release by $A_1-adenosine$ receptor is mediated by the G-protein, and nifedipine-sensitive $Ca^{2+}-channel$ and adenylate cyclase system are coupled partly to this effect, and that protein kinase C and glibenclamide-sensitive $K{^+}-channel$ are not involved in this process.

  • PDF

Influence of Adenosine and Magnesium on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 및 Magnesium의 영향)

  • Choi, Bong-Kyu;Yoon, Young-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.175-182
    • /
    • 1993
  • As it has been reported that the depolarization-induced ACh release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of endogenus adenosine as a modulator of hippocampal acetylcholine release in this study. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3Hz, $5\;V\;cm^{-1},$ 2ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. Adenosine, in concentrations ranging from $0.3\;to\;100\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. $DPCPX(1{\sim}10{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium release. And the effects of adenosine were significantly inhibited by $DPCPX(2{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from $0.3\;to\;30\;{\mu}M$ decreased evoked tritium outflow with increase of basal rate of tritium release, and these effects were also abolished by $DPCPX(2{\mu}M)$ pretreatment. But, $CGS(0.1{\sim}10{\mu}M)$, a recently introduced potent $A_2-agonist$, did not alter the evoked tritium outflow. When the magnesium concentration of the medium was reduced to 0 mM, there was no change in evoked ACh release by adenosine. In contrast, increasing the magnesium concentration to 4 mM, the inhibitory effects of adenosine were significantly potentiated. These results indicate that $A_1-adenosine$ heteroreceptor is involved in ACh-release in the rat hippocampus and the inhibitory effects of adenosine mediated by $A_1-receptor$ is magnesium-dependent.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Yang, Kyung-Moo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Since it has been reported that the depolarization-induced norepinephrine (NE) release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $Vcm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide (NEM, 10 & $30{\mu}M$), a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. $4{\beta}-Phorbol$ 12,13-dibutyrate (PDB, $1{\mu}M$), a specific protein kinase C (PKC) activator, increased the evoked NE release, whereas polymyxin B sulfate (PMB,0.1 mg), a PKC inhibitor, decreased the release, and the adenosine effects were inhibited by these agents. Nifedipine $(1{\mu}M)$, a $Ca^{2+}-channel$ blocker of dihydropyridine analogue, did not affect the adenosine effect. Tetraethylammonium (TEA, 3 mM) increased the evoked NE release, and inhibited the adenosine effects, but glibenclamide, a ATP dependent $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP (100 & $300{\mu}M$), a membrane-permeable analogue of cAMP, did not alter the NE release, but adenosine effects were inhibited by pretreatment with 8br-cAMP. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by the C-protein, which is coupled to protein kinase C, adenylate cyclase system and TEA sensitive $K^+-channel$, and that nifedipine-sensitive $Ca^{2+}-channel$ and glibenclamide-sensitive $K^+-channel$ are not involved in this process.

  • PDF