• 제목/요약/키워드: Electrical Load Equipments

검색결과 86건 처리시간 0.029초

전기부하설비의 전력분석을 위한 데이터 획득 시스템의 개발 (Development of Data Aquisition System for Electrical Power Analysis of Electrical Load equipments)

  • 이상익;전정채;유대근
    • 조명전기설비학회논문지
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2004
  • 전기부하설비의 전압, 전류, 전력, 고조파 등의 분석을 위해서는 수학적 모델링 보다는 실제 계측을 통한 전력분석이 필요하고 이를 통해 전기설비의 효율적인 관리, 에너지 절약 및 사고 예방에 필요한 대책을 수립할 수 있다. 특히 비선형 부하에 의해 발생되는 고조파의 대책수립을 위해 계측을 통한 전력분석이 필수적이다. 따라서 본 논문에서는 전기부하설비에 공급되는 전력을 측정하고 분석할 수 있는 저가형 데이터 획득 시스템을 DSP 기반으로 개발하였고 이를 실제 전력계통에 설치하여 전력 및 고조파의 측정과 분석을 수행함으로써 그 성능을 입증하였다.

765[㎸] 변전소 시뮬레이터를 위한 조류계산 프로그램에 관한 연구 (A Study on the Load Flow Program for 765[㎸] Substation Simulator)

  • 여상민;김철환;이종포
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.201-206
    • /
    • 2003
  • Power system is analyzed by three methods of load flow, fault calculation, and voltage stability. Among there, load flow is calculated to flow of power in power in system at steady state. But, load flow is difficult to analyze to flow of power in substation, because power flow frequently alter by various equipments such as circuit bleaker, disconnect switch and shunt reactor. Particular, in 765[㎸] system, because of form of 1.5GB for stable operation, structure of substation has been very complex. In this paper, we describe technique for application of load flow algorithm in simulator for 765[㎸] substation. For this technique, we built each database for various equipments and considered form of 1.5GB Data as form of bus and line, for application of load flow, are acquired from built database, and then calculate load flow in substation. And. results of load flow are outputted in screen of operator console program.

부하설비의 전력품질 분석을 위한 데이터 획득시스템에 관한 연구 (A Study on the Data Aquisition System for Power Quality Analysis of Load Equipment)

  • 유재근;이상익;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.92-94
    • /
    • 2007
  • In order to analyze voltage, current, electrical power, harmonics and so on of electrical load equipments, electrical power analysis by real measurement rather than mathematical modeling is necessary, and plan of countermeasure for efficient management, energy frugality and accident prevention of electrical equipments using it is possible. Especially, electrical power analysis by real measurement is indispensable in order to consider countermove of harmonic occurred by nonlinear load. So, in this paper, we developed DSP(Digital Signal Processor) based low price date aquisition system, and verified it's ability by performing measurement and analysis of electrical power and harmonic in the real power system.

  • PDF

순간전압강하에 대한 비선형 저압전기기기의 동적특성 (A Dynamic Characteristics on Non-linear Voltage Electric Equipment under Voltage Sag)

  • 이현철;정성원;김재현;이근준
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.336-343
    • /
    • 2008
  • In this study, a transition of power quality was characterized by non-linear voltage electric equipments under voltage sag. The test was inputted voltage sag to IPC(Sag Generator) from AVR, and then to equipments by IPC which adjust voltage magnitude and duration. The load test which non-linear voltage electric equipments used PLC, Magnetic Contactor, SMPS, HID Lamp. The test result was different from each other according to a manufacturing companys, models, and equipments. PLC was greatly described to be stabilized voltage sag in case of no load then rated load. Magnetic Contactor was made a difference to phase angles on voltage sag, which was $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. HPD Lamp was described to be stabilized the sodium lamp, and to be unstabilized the metal hailed lamp. The test result was showed CBEMA curve that stand for evaluated responsiveness of voltage sag. This study was tested description to dynamic characteristics on non-linear voltage electric equipment under voltage sag. There was hoped that power system designed the essential particulars.

겨울철 심야기기 사용에 따른 부하사용패턴 추정 (Estimation of Load Pattern due to Midnight Power Equipment)

  • 김창수;이창호;진병문;백영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.48-50
    • /
    • 2001
  • Recently, electric heating using midnight power has brought a rapid increase. due to a rise of oil price and a low tariff of midnight power. Therefore, the increase of midnight power use has much influenced on midnight load pattern. This paper estimates the load pattern due to midnight power equipments, analyzes the influence of the spread of midnight power equipments on midnight load and suggests reasonable spread level of equipments.

  • PDF

농촌의 전력및 전기기기의 이용특성분석 (Analysis of the Utilization Characteristics of Electrical Power and Equipments on the Farms)

  • 박승우;류한열
    • 한국농공학회지
    • /
    • 제17권4호
    • /
    • pp.3943-3955
    • /
    • 1975
  • The purposes of this study are to evaluate the utilization characteristics of electrical power consumption, to grasp the present trends in the use of electrical equipments, to estimate the demand factor and load factor being held, and to evaluate the efficiency of electical uses for the recently electrified farms cultivating paddy rice. For the purposes, 109 sample farms located in eleven villiages electrified in six different years from 1968 to 1973, were chosen at random and investigated on 35 items concerning to electrical uses and wiring systems. The survey was carried out in 1975, in the vinicity of Suweon city. The results are summarized as follows: i) The average annual power consumption on sample farms is considered to be low, being 242.9 Kwh. in 1974, and varied according to the different electrified year and size of cultivated land, respectively. It has significant positive correlation to the area of farm, too. ii) Between the number of year of electrical uses and the power consumption, there is very significant positive correlation, which could be expressed as Y=43.041+16.108 X, where X represents the number of years of electrical uses. The annual increment of power consumption is much greater at the beginning of the electrification than that at the later years, its average being approximately 20 percent. However, it is recommended that any estimation of long-term increments should be carefully investigated. iii) The monthly power consumption varies considerably throughout a year, in which the heaviest farm load occurs in November. Observing the seasonal variation of consumption, the winter-time is the heaviest season while the summer is the lowest. The result implies house lighting is chief contribution to the present electrical consumption on the farms. Comparing the variation of monthly consumption ratios between the sample farms and industries, the electrical uses on the farms are independant of the industrial uses, and further, the agricultural uses are of inverse pattern to the farms from the results that there is negative correlationship between them, iv) The number of electrical equipments used on the farms are occupied chiefly by lighting sources. Next to the lighting sources, household appliances of small quantity and some motors are used. The mean electrical quantity is about 1, 127.4 watt, which corresponds to about 37.6 per cent to the contracted quantity. The composition of quantity is chiefly occupied by the electrical motor of about 1.5 hp., single-phased. The number of the annual utilization hours of each equipment is tabulated in Table IV-5. In contradiction to the high utilization of lighting sources and small household appliances, the motor is poorly used for approximately 22 hours in a year. v) More than 55 per cent of farms want to purchase new electrical equipments such as small household appliances and electrical motors in their number. The impulse of purchasing such items is stimulated by the contacts to the mass media and their knowledge on such equipments. Consequently, the increase of electrical uses could be prompted by such trials as education and demonstration. vi) The demand and load factors on the farms vary considerably according to the greater variation of the power consumption, daily or monthly. The daily demand factor is 22.4 per cent and load factor 18.6 per cent, while the annual demand factor is 1.3 per cent and load factor 70 per cent approximately. Therefore, the low efficiency of construction cost requires re-evaluation of the present contracted quantity of 3 Kw. or increase of electrical uses. vii) The electrical energy on the farms devoted chiefly to lighten the farm residences does not contribute to the farm incomes. Consequently, the cost of electrical consumption presses considerably upon the farm economy. Therefore, there is great need to build up the electrical uses on the farms through the development of new works and techinques to utilize any electrical equipments on the production of farm products. Further more, such the development should be related to increase the actual income of the farm consumers.

  • PDF

선형부하가 고려된 고조파 전류 특성 및 방출값 평가 (A Study on the Harmonic Current Characteristic and Emission Value Assess Method Considering the Linear Load)

  • 박용업;최성훈;장준수
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.33-39
    • /
    • 2010
  • In order to operate the power system satisfactory for both system operators and customers, it is important to limit the harmonic currents to the allowable levels which injected into the system from the distorting installations. In this regard, the principles for the allocation of emission limits on individual customer were introduced in the technical report of IEC61000-3-6. According to these general principles, the emission limits are dependent on the agreed power of the customer, the power of the harmonic-generating equipment, and the system characteristics. The considerations in this report are very comprehensive and the process introduced is practical enough to implement as it is. However, there is a fact not appropriately dealing in the report that could be a very tickle but has a huge impact on determining the emission limit. This is the effect of non-harmonic load currents. More precisely, these are from the equipments which do not emit any harmonic or may emit harmonics but this specific order under the consideration by themselves if the source power is sinusoidal. The load currents originated from these equipments have an effect of active filter against the specific order of harmonic therefore, these should be dealt as a significant factoron the process of determining the emission limits for individual customer.

7-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR의 전압제어 (A Voltage Control Technique of Line-Interactive DVR Using 7-Level H-Bridge Inverter)

  • 강대욱;현동석;이우철
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.705-715
    • /
    • 2007
  • Recently, the interest on power quality has been hot issue because the equipments cause voltage disturbance and have become more sensitive to the voltage disturbance. Additionally, the reseach on power electronic equipments applying to the high power has been increased. This paper deals with Line-Interactive Dynamic Voltage Restorer(LIDVR) system using 7-Level H-Bridge inverter, which is one of the solutions to compensate the voltage disturbance and to increase the power of equipments. The LIDVR has the following advantages comparing to the DVR with the series injection transformer. It has the power factor near to unity under the condition of normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then the voltage control algorithm is proposed to get the sinusoidal load voltage with constant amplitude. Finally, simulation and experiment results verify the proposed LIDVR system.

축열식 전기보일러용 마이크로프로세서 제어장치개발 (The development of microprocessor_based controller for the electrical boiler of heat storage type)

  • 김종수;박정우;조기연;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.250-253
    • /
    • 1989
  • As the necessity of increasing the midnight base load is extensively increased, electric power companies have to increase the demand of midnight electrical power by lowering the electrical charge rate at midnight. One of the most widely used midnight equipments is the heat Storage type's electrical boiler. A Single chip microprocessor controller for the heat-storage type's electrical boiler is developed. This controller call reduce the undesirable peak load at the begining of midnight (i.e.11 P.M.) time band by using backward load control method. Futhermore, this controller enables reservation of heat storge and the effective heating control the field test has been done by use the boiler for 66$m^2$ with the heater of 21KW quality.

  • PDF

보호거리와 부하 유형에 따른 SPD의 보호효과에 대한 실험적 고찰 (Experimental Examinations on Protective Effects of SPDs Associated with the Protective Distance and Type of Load)

  • 이복희;김유하;안창환
    • 조명전기설비학회논문지
    • /
    • 제26권10호
    • /
    • pp.81-88
    • /
    • 2012
  • Surge protective devices(SPDs) are widely used as a most effective means protecting the electrical and electronic equipment against overvoltages such as lightning and switching surges. When installing SPDs, it is essential that the voltage protection level provided by SPDs should be lower than the withstand voltage of the equipment being protected. But even the proper selection of SPDs are achieved, the voltage at the equipment terminal may be higher than the residual voltage of SPD due to the reflection and oscillation phenomena. This paper was focused on the investigations of the conditions for which the equipment is protected by an SPD taking into account the influences of the protective distance and type of load. The protective effects of SPD with voltage-limiting component were analyzed as functions of types of load and protective distance between the SPD and load. As a result, in the cases of long protective distances, capacitive loads and loads with high resistance, the voltage at the load terminal was significantly higher than the residual voltage of SPD. It was found that the proper installation of SPDs should be carried out by taking into account the protective distance and type of load to achieve reliable protection of electronic equipments against surges.