• Title/Summary/Keyword: Electrical Drives

Search Result 733, Processing Time 0.02 seconds

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Estimation of ESR in the DC-Link Capacitors of AC Motor Drive Systems with a Front-End Diode Rectifier

  • Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.411-418
    • /
    • 2015
  • In this paper, a new method for the online estimation of equivalent series resistances (ESR) of the DC-link capacitors in induction machine (IM) drive systems with a front-end diode rectifier is proposed, where the ESR estimation is conducted during the regenerative operating mode of the induction machine. In the first place, a regulated AC current component is injected into the q-axis current component of the induction machine, which induces the current and voltage ripple components in the DC-link. By processing these AC signals through digital filters, the ESR can be estimated by a recursive least squares (RLS) algorithm. To acquire the AC voltage across the ESR, the DC-link voltage needs to be measured at a double sampling frequency. In addition, the ESR current is simply reconstructed from the stator currents and switching states of the inverter. Experimental results have shown that the estimation error of the ESR is about 1.2%, which is quite acceptable for condition monitoring of the capacitor.

Bus Clamping PWM Based Hysteresis Current Controlled VSI Fed Induction Motor Drive with Nearly Constant Switching Frequency

  • Peter, Joseph;Mohammed Shafi, KP;Ramchand, Rijil
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1523-1534
    • /
    • 2017
  • A Current Error Space Phasor (CESP) based hysteresis controller with online computation of the boundary for two-level inverter fed Induction Motor (IM) drives is presented in this paper. The stator voltages estimated along the ${\alpha}$-and ${\beta}$-axes and the orthogonal current error components of the motor are used in the online computation of the hysteresis boundary. All of the inherent benefits of space phasor based hysteresis controllers such as its quick dynamic response and nearby voltage vector switching are present in the proposed scheme with the added benefit of suppressing switching frequency variations. The similarity in the frequency spectrum of the phase voltage obtained at the output of the inverter using the proposed scheme and Bus Clamping Pulse Width Modulation (BCPWM) based drive is justified with the help of extensive MATLAB SIMULINK simulations. The controller is experimentally verified with a three phase, 2.2 kW IM drive for steady state and transient conditions and the obtained results match the simulation results.

Common-Mode Voltage Elimination with an Auxiliary Half-Bridge Circuit for Five-Level Active NPC Inverters

  • Le, Quoc Anh;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.923-932
    • /
    • 2017
  • This paper proposes a novel scheme which can compensate the common-mode voltage (CMV) for five-level active neutralpoint clamped (5L-ANPC) inverters, which is based on modifying the space vector pulse width modulation (SVPWM) and adding an auxiliary leg to the inverter. For the modified SVPWM, only the 55 voltage vectors producing low CMV values among the 125 possible voltage vectors are utilized, which varies over the three voltage levels of $-V_{dc}/12$, 0 V, and $V_{dc}/12$. In addition, the compensating voltage, which is injected into the 5L-ANPC inverter system to cancel the remaining CVM through a common-mode transformer (CMT) is generated by the additional NPC leg. By the proposed method, the CMV of the inverter is fully eliminated, while the utilization of the DC-link voltage is not decreased at all. Furthermore, all of the DC-link and flying capacitor voltages of the inverter are well controlled. Simulation and experimental results have verified the validity of the proposed scheme.

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong;Liu, Jinglin;Hu, Yihua;Zhang, Xiaokang;Ni, Kai;Si, Jikai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1945-1955
    • /
    • 2018
  • High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Novel Switching Table for Direct Torque Controlled Permanent Magnet Synchronous Motors to Reduce Torque Ripple

  • Arumugam, Sivaprakasam;Thathan, Manigandan
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.939-954
    • /
    • 2013
  • The Direct Torque Control (DTC) technique for Permanent Magnet Synchronous Motors (PMSM) is receiving increased attention due to its simplicity and robust dynamic response when compared with other control techniques. The classical switching table based DTC results in large flux and torque ripples in the motors. Several studies have been reported in the literature on classical DTC. However, there are only limited studies that actually discuss or evaluate the classical DTC. This paper proposes, novel switching table / DTC methods for PMSMs to reduce torque ripples. In this paper, two DTC schemes are proposed. The six sector and twelve sector methodology is considered in DTC scheme I and DTC scheme II, respectively. In both DTC schemes a simple modification is made to the classical DTC structure. The two level inverter available in the classical DTC is eliminated by replacing it with a three level Neutral Point Clamped (NPC) inverter. To further improve the performance of the proposed DTC scheme I, the available 27 voltage vectors are allowed to form different groups of voltage vectors such as Large - Zero (LZ), Medium - Zero (MZ) and Small - Zero (SZ), where as in DTC scheme II, all of the voltage vectors are considered to form a switching table. Based on these groups, a novel switching table is proposed. The proposed DTC schemes are comparatively investigated with the classical DTC and existing literatures through theory analysis and computer simulations. The superiority of the proposed DTC method is also confirmed by experimental results. It can be observed that the proposed techniques can significantly reduces the torque ripples and improves the quality of current waveform when compared with traditional and existing methods.

Near-Five-Vector SVPWM Algorithm for Five-Phase Six-Leg Inverters under Unbalanced Load Conditions

  • Zheng, Ping;Wang, Pengfei;Sui, Yi;Tong, Chengde;Wu, Fan;Li, Tiecai
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • Multiphase machines are characterized by high power density, enhanced fault-tolerant capacity, and low torque pulsation. For a voltage source inverter supplied multiphase machine, the probability of load imbalances becomes greater and unwanted low-order stator voltage harmonics occur. This paper deals with the PWM control of multiphase inverters under unbalanced load conditions and it proposes a novel near-five-vector SVPWM algorithm based on the five-phase six-leg inverter. The proposed algorithm can output symmetrical phase voltages under unbalanced load conditions, which is not possible for the conventional SVPWM algorithms based on the five-phase five-leg inverters. The cause of extra harmonics in the phase voltages is analyzed, and an xy coordinate system orthogonal to the ${\alpha}{\beta}z$ coordinate system is introduced to eliminate low-order harmonics in the output phase voltages. Moreover, the digital implementation of the near-five-vector SVPWM algorithm is discussed, and the optimal approach with reduced complexity and low execution time is elaborated. A comparison of the proposed algorithm and other existing PWM algorithms is provided, and the pros and cons of the proposed algorithm are concluded. Simulation and experimental results are also given. It is shown that the proposed algorithm works well under unbalanced load conditions. However, its maximum modulation index is reduced by 5.15% in the linear modulation region, and its algorithm complexity and memory requirement increase. The basic principle in this paper can be easily extended to other inverters with different phase numbers.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

Blue light signaling in stomatal guard cells

  • Shimazaki, Ken-ichiro;Michio Doi;Toshinori Kinoshita
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.86-89
    • /
    • 2002
  • Blue light activates proton pump, and creates electrical gradient across the plasma membrane and drives $K^{+}$ uptake in stomatal guard cells. In this presentation, we provide evidence for regulatory mechanisms of the pump and the identification of blue light receptor. The pump is shown to be the plasma membrane H$^{+}$- ATPase and is activated through phosphorylation of the C-terminus. Phosphorylation occurred and 14-3-3 protein bound to the phosphorylation site. The binding of 14-3-3 protein was required for the H$^{+}$-ATPase activation. We also found that phot1 phot2 double mutant does not respond to blue light but other mutants respond to blue light by stomatal opening. However, all these mutants are capable of stomatal opening in the presence of fusicoccin, an activator of the H$^{+}$-ATPase. These results suggest that both photl and phot2 act as blue light receptors in guard cells.d cells.

  • PDF