• Title/Summary/Keyword: Electrical Drives

Search Result 732, Processing Time 0.026 seconds

Simple Bump-removal Scheme for the Position Signal of PM Motor Drives with Low-resolution Hall-effect Sensors

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1449-1455
    • /
    • 2017
  • The vector control technique using low-resolution Hall-effect sensors has been widely used especially in consumer electronics. Due to electrical and/or mechanical unevenness related to binary-type Hall sensors, the calculated or estimated position information has discontinuities so called bumps, which causes the deterioration of vector control performance. In order to obtain a linearly changing position signal from low-precision Hall-effect sensors, this paper proposes a simple bumps in position signal removal algorithm that consists of a first-order observer with low-pass filtering scheme. The proposed algorithm has the feature of no needs for system parameters and additional estimation processes. The validity of the proposed method is verified through simulation and experimental results.

Harmonic Intensity Reduction Technique for Single Phase Switched Reluctance Motor Drives Using a New Random PWM Scheme

  • Nguyen, Minh-Khai;Jung, Young-Gook;Yang, Hyong-Yeol;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This paper proposes a new random switching strategy using a DSP TMS320F2812 to reduce the harmonics spectra of single phase switched reluctance motors. The proposed method combines the random turn-on/off angle technique and the random pulse width modulation technique. A harmonic spread factor (HSF) is used to evaluate the random modulation scheme. In order to confirm the effectiveness of the proposed method an experiment was conducted. The experimental results show that the harmonic intensity of the output voltage for the proposed method is better than that for conventional methods.

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Sensorless IPMSM Drives based on Extended Nonlinear State Observer with Parameter Inaccuracy Compensation

  • Mao, Yongle;Liu, Guiying;Chen, Yangsheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.289-297
    • /
    • 2014
  • This paper proposed a novel high performance sensorless control scheme for IPMSM based on an extended nonlinear state observer. The gain-matrix of the observer has been derived by using state linearization method. Steady state errors in estimated rotor position and speed due to parameter inaccuracy have been analyzed, and an equivalent flux error is defined to represent the overall effect of parameter errors contributing to the wrong convergence of the estimated rotor speed as well as rotor position. Then, an online compensation strategy was proposed to limit the estimation errors in rotor position and speed. The effectiveness of the extended nonlinear state observer is validated through simulation and experimental test.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

Speed Control of High Speed Synchronous Reluctance Motor By Vector Control

  • Kim, Min-Tae;Jo, Hang-Shin;Seong, Se-Jin;Paek, Tong-Ki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.742-747
    • /
    • 1998
  • In the High-Speed range for salient type synchronous reluctance motors, the effect of iron loss can not be negligible. In this paper, the SynRM without cage is analyzed mathematically to model and the speed control system is examined by simulation. In order to control the revolution speed, a closed-loop control with vector control and decoupling control are applied to the high-speed SynRM drives. The speed control system is analyzed to investigate the desired speed characteristics of high SynRM by simulation.

  • PDF

CURRENT CONTROL ALGORITHM TO REDUCE TORQUE RIPPLE IN BRUSHLESS DC MOTORS

  • Lee, Kwang-Woon;Park, Jung-Bae;Yeo, Hyeong-Gee;Yoo, Ji-Yoon;Jo, Hyun-Min
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.380-385
    • /
    • 1998
  • This paper proposes a current control algorithm to reduce the torque ripple to commutation in unipolar PWM inverter-fed trapezoidal brushless dc motor drives. In this paper, we analyze the average voltage variation of the conducting phase due to commutation, and design a current controller to compensate for the average voltage variation. The proposed method predicts the duration of commutation to reduce the torque ripple due to over-compensation. Experimental results are presented that validate the proposed method.

  • PDF

Fault Diagnosis and Neutral-Point Voltage Control according to Faults for a Three-level Neutral-Point-Clamped PWM Inverter (NPC 3-레벨 PWM 인버터에서 고장 발생에 따른 고장 진단과 중성점 전압 제어)

  • Son Ho-In;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.11-16
    • /
    • 2003
  • The 3-level converter/inverter system is very efficient in the ac motor drives of high voltage and high power application. This paper proposed a simple method to diagnose faults using change of current vector pattern in space vector diagram when the faults occurrence in the 3-level inverter and a control method that can protect system from unbalance of the neutral point voltage according to faults. The validity of the proposed method is demonstrated by the simulation results.

  • PDF

REDUCTION OF AUDIBLE SWITCHING NOISE IN INDUCTION MOTOR DRIVES USING RANDOM POSITION PWM

  • Na, Seok-Hwan;Wi, Seok-Oh;Lim, Young-Cheol;Yang, Seung-Hak
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.316-319
    • /
    • 1998
  • RPWM(Random Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics on the wide frequency area. Using randomly changed switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise cab be spread to the wide-band area. The wide-band noise is much more comfortable and less annoying than the narrow-band one. So RPWM have been attracting an interest as an excellent method for the reduction of acoustic noise on the inverter drive system. In this paper a new RPPWM (Random Position PWM) is proposed and implemented. Each of three pulses is located randomly in each switching interval. Along with the randomization of PWM pulses, the space vector modulation is executed in the C167 microcontroller also. The experimental results show that the voltage and current harmonics were spread to wide band area and that the audible switching noise was reduced by proposed RPPWM method.

  • PDF

Analysis and Measurement of Current Harmonics Due to Non-linear Load in Low Voltage System (저압 시스템에서 비선형 부하의 사용에 따른 전류 고조파 해석 및 측정)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.601-608
    • /
    • 2001
  • The ever increasing density of adjustable speed drives(ASD) device with non-linear operating characteristics has been to put tremendous harmonic stress on end user's electrical application. All ASD controllers which employ solid state power devices cause harmonic currents in the source side line. This paper describes harmonic problems for use of ASD. In order to investigate the effect of harmonics caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current waveforms. Measurement results show that additional operation of linear load at the parallel bus with nonlinear load such as ASD is helpful to the reduction of harmonic influence.

  • PDF