• Title/Summary/Keyword: Electrical Design

Search Result 15,002, Processing Time 0.037 seconds

Improving SoC Design Flow with Unified Modeling Language and HDL (UML과 HDL을 이용한 SoC 설계 개선)

  • Kim, Chang-Hoon;Hwang, Sang-Joon;Hong, Seung-Woo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.135-138
    • /
    • 2005
  • HDL(Hardware Description Language) is the most important modem tools used to describe hardware, and becomes important as we move to higher levels of abstraction. The HDL has been made brisk use of in analog design, MEMS device[1-2], process related field as well as digital design. The most important characteristics of HDL is Abstraction which is the strongest tool that extend greatly designer's design ability. In this paper by the Modelling Continuum with hierarchical structure of abstraction, we apply UML(Unified Modeling Language) to SoC Design with HDL UML makes an easy and visual description of the various levels of abstraction, and gives designers good flexible modeling capabilty for SoC Design.

  • PDF

Robust Optimization with Static Analysis Assisted Technique for Design of Electric Machine

  • Lee, Jae-Gil;Jung, Hyun-Kyo;Woo, Dong-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2262-2267
    • /
    • 2018
  • In electric machine design, there is a large computation cost for finite element analyses (FEA) when analyzing nonlinear characteristics in the machine Therefore, for the optimal design of an electric machine, designers commonly use an optimization algorithm capable of excellent convergence performance. However, robustness consideration, as this factor can guarantee machine performances capabilities within design uncertainties such as the manufacturing tolerance or external perturbations, is essential during the machine design process. Moreover, additional FEA is required to search robust optimum. To address this issue, this paper proposes a computationally efficient robust optimization algorithm. To reduce the computational burden of the FEA, the proposed algorithm employs a useful technique which termed static analysis assisted technique (SAAT). The proposed method is verified via the effective robust optimal design of electric machine to reduce cogging torque at a reasonable computational cost.

Optimum Design of Electrical Apparatus Using Design Variable Parametrization (설계변수 매개화를 이용한 전기기기 최적설계)

  • Lee, Hyeong-Beom;Park, Il-Han;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.546-555
    • /
    • 2001
  • ln this paper, the optimum design of electrical apparatus using design variable parametrization is presented. For analysis and design, the finite element method and the design sensitivity method is used, respectively. By applying the parametrization of the design variables, the obtained designed shape is continuous and smooth. For the parametrization the Bezier spline is used. The designed shape with parametrization is characterized by the control points. By delivering control points to the commercial CAD packages or NC machines, the exact designed shape can be realized in the manufacturing the electrical apparatus. The designed results with and without parametrization are compared and the validity of the parametrization is verified.

  • PDF

The Design of a Inductive Superconducting Fault Current Limiter (유도형 초전도 사고전류제한기의 설계)

  • Bae, Joon-Han;Lee, Sang-Jin;Oh, Yun-Sang;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.119-121
    • /
    • 1995
  • This paper is a study on inductive superconducting fault current limiter design.. We have created simulation for an imaginery power system with inductive superconducting fault current limiter. Then input variables for characteristic analysis and actual manufacturing, and output variables for design results was assigned. Using the results from these variables, the design criterion was determined which was fed into concept design arising from characteristic analysis to determine the inductance of limiting coil and normal state resistance value of triggering coil. These result was put back into design details to finally give out the design result for inductive superconducting fault current limiter.

  • PDF

Optimal design of High precision Maglev system using Finite Element Method and Design Of Experiments (유한 요소법과 실험계획법을 병행 사용한 고정밀 자기 부상 시스템의 최적 설계)

  • Lee, Sung-Gu;Won, Sung-Hong;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1267-1269
    • /
    • 2005
  • This paper presents the design for improving performance of the high-precision Magnetic levitation system. Motor performance on various design schemes such as thickness and magnetizing patterns of the permanent magnets, pole pitch, length of air gap, turn number of windings, and thickness of the aluminum-core has been investigated in detail by using FEM(Finite Element Method) Simulation-based DOE(Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The design in all aspects is proposed by an optimization algorithm using regression equation derived from the simulation-based DOE.

  • PDF

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.

A Design Guide of 3-stage CMOS Operational Amplifier with Nested Gm-C Frequency Compensation

  • Lee, Jae-Seung;Bae, Jun-Hyun;Kim, Ho-Young;Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • An analytic design guide was formulated for the design of 3-stage CMOS OP amp with the nested Gm-C(NGCC) frequency compensation. The proposed design guide generates straight-forwardly the design parameters such as the W/L ratio and current of each transistor from the given design specifications, such as, gain-bandwidth, phase margin, the ratio of compensation capacitance to load capacitance. The applications of this design guide to the two cases of 10pF and 100pF load capacitances, shows that the designed OP amp work with a reasonable performance in both cases, for the range of compensation capacitance from 10% to 100% of load capacitance.

Design Variable Parametrization in Finite Element Models for Optimal Design of Electromagnetic Devices (전기기기의 최적설계를 위한 유한요소모델의 설계변수 매개화)

  • Kim, Chang-Hyun;Kim, Chang-Wook;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.146-148
    • /
    • 1998
  • For the shape design of electromagnetic devices using the FEM, the choice of design parameters influence to the success of the optimization process. If the design parameter distribution has a one to one corespondence with finite element model, we can encounter not only serious accuracy problem but also obtain a zigzag shape along the interface. The nodes between those design parameters can be parameterized by interpolating using one among many interpolation methods. The conventional parameterization of design parameters has a limit of application for shape, because design parameters and movable nodes are linearly intepolated. In this paper, using the B-spline curve that use to present any interfaces in computer graphics, the curvilinear parameterization between design parameters and node points is compared with the linear parameterization.

  • PDF

A New Unified Design Environment for Optimization of Electric Machines Based on Continuum Sensitivity and B-Spline Parametrization

  • Kim, Min-Ho;Lee, Hyang-Beom;Kim, Hyeong-Seok;Byun, Jin-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.513-518
    • /
    • 2011
  • In this paper, a unified design environment is developed for the optimization of electric machines based on continuum sensitivity. For electromagnetic (EM) system analysis, COMSOL scripting environment is used. Optimization module is developed by MATLAB programming, which can be combined with COMSOL script commands. The modules are combined into one MATLAB project, and iteration process necessary for the optimization of EM system can be performed efficiently. During the design process, visual feedback of the current design status is given to the designer. In addition, the B-Spline parametrization of the nodal points is implemented to obtain smooth boundary of the device. The developed software is applied to the problem of finding uniform flux density distribution at the air gap of an electromagnet to verify its feasibility and effectiveness.