• Title/Summary/Keyword: Electrical Conductivity (EC)

Search Result 385, Processing Time 0.032 seconds

Effects of Nutrient Solution on Growth and Amount of Ginsenoside of Two Year Old Ginseng Grown under Hydroponic Culture (수경재배 양액조건이 2년생 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Yu, Jin;Jang, In Bae;Suh, Soo Jung;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.198-206
    • /
    • 2016
  • Background: Electrical conductivity (EC) and pH are important features of nutrient solution, affecting both growth and quality of crops by altering nutrient uptake. Methods and Results: The pH values of nutrient solutions were controlled at 5.0, 5.5, 6.0, 6.5 and EC values were controlled at 0.68, 0.84, 1.23, 1.41 dS/m. Gingesng root weights were higher during the initial growth period when the plants were treated with low pH and low EC nutrient solutions. However, the higher pH and EC levels, the greater the increase in the rate of root weight between the initial and middle growth periods. The highest ginsenoside amount changed during growth period. The total ginsenoside amount was highest in the root, and the lowest in leaves at 45 and 90 days after treatment, respectively, with solution at a pH of 6.0. After 135 days of treatment, the highest total ginsenoside amount was detected in root treated with soluton with EC values of 1.23 dS/m. Conclusions: For the cultivation of ginseng using a nutriculture system, the pH and EC values of nutrient solutions should to be controlled based on the stage of growth and targeted plant organ (root or leaves).

Modification of C/C Composite Bipolar Plate by Addition of Electro-Conductive Carbon Black

  • Ryu, Seung-Kon;Hwang, Taek-Sung;Lee, Seung-Goo;Lee, Sun-A;Kim, Chang-Soo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.165-169
    • /
    • 2001
  • Modification of C/C composite bipolar plate for improving electrical conductivity was carried out by addition of electroconductive carbon black (EC-CB). Carbon black was carefully mixed to methanol-containing phenolic resin, impregnated into 2D-carbon fabrics, hot pressed and then carbonized to obtain composite plate. Inclusion of electro-conductive carbon black enhanced the electrical conductivity of the C/C composites by increasing the conduction path. Addition of 10 vol% carbon black increased the electrical conductivity from 5.5/${\Omega}cm$ to 32/${\Omega}cm$ and reduced the crack formation by filling effect, resulting in the increase of flexural properties of composite plate. However, at carbon black content over 10 vol%, flexural properties decreased by delaminating role of excess carbon black at the interface in C/C composites.

  • PDF

Effects of Operational Parameters on the Removal of Acid Blue 25 Dye from Aqueous Solutions by Electrocoagulation

  • Balarak, Davoud;Ganji, Fatemeh;Choi, Suk Soon;Lee, Seung Mok;Shim, Moo Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.742-748
    • /
    • 2019
  • Influence of several experimental parameters (e.g., initial dye concentration, pH, distance between electrodes, applied voltage, electrical conductivity, current density, and reaction time) on the performance of electrocoagulation (EC) process for the removal of acid blue 25 (AB25) was studied. A bipolar batch reactor was used to test the impact of the parameters. The removal efficiency (RE) of AB25 dye was promoted by increasing the contact time, voltage, electrical conductivity, and applied current density. In contrast, RE of AB25 decreased with higher level of AB25 and the longer distance between electrodes. The removal efficiency increased consistently until pH 7, but decreased above pH 7. The maximum efficiency of AB25 removal above 90% was obtained at a voltage of 60 V, reaction time of 90 min, distance between electrodes of 0.5 cm, initial concentration of 25 mg/L, conductivity of 3,000 μS/cm and pH of 7. These results imply that the high RE of AB25 dye from the aqueous solution can be achieved by EC process.

Ion Conduction Properties of PMMA/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PMMA/PVDF계 고분자 전해질의 이온 전도 특성)

  • 이재안;김종욱;구할본;이헌수;손명모
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.347-350
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PMMA/PVDF electrolytes as a function of a mixed ratio were reported for PMMA/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PMMA/PVDF, plasticizer and Li salt. The ion conductivity of PMMA/PVDF electrolytes was 10$\^$-3/S/cm, which may be applicable to a constituent of lithium secondary battery. 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and AC impedance were used for the determination of transference numbers in PMMA/PVDF electrolyte film. The transference number of 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte is 0.55.

  • PDF

Thermal and Electrical Properties of Poly(vinylidene fluoride-hexafluoropropylener)-Based Proton Conducting Gel-Electrolytes (Poly(vinylidene fluoride-hexafluoropropylene)계 양성자 전도성 겔-전해질의 열적, 전기적 특성)

  • 최병구;박상희
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.179-184
    • /
    • 2002
  • Polymer electrolyte films consisting of poly (vinylidenefluoride-hexafluoro-propylene) (PVdF-HFP) $H_3PO_4$and a mixture of ethylene carbonate(EC), $\gamma$-butyrolactone(BL) and dimethylcarbonate (DMC) were examined in order to obtain the best compromise between high protonic conductivity, homogeniety and dimensional stability. Measurements of differential scanning calorimetry and ionic conductivity have been carried out for various compositions. The highest proton conductivity of 7.3 $\times$$10^{-3}Sm^{-1}$ at $30^{\circ}C$ were obtained for a film of 30(PVdF-HFP) + 50EC/DMC + 20H$_3$PO$_4$. From the thermal study, it has been found that the PVdF-HFP gels are stable up to $80^{\circ}C$, and the $H_3PO_4$ enhances the miscibility of the polymer and the solvent by interacting sensitively with polymer segments.

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Development of a Supporting System for Nutrient Solution Management in Hydroponics - II. Estimation of Electrical Conductivity(EC) using Neural Networks (양액재배를 위한 배양액관리 지원시스템의 개발 - II. 신경회로망에 의한 전기전도도(EC)의 추정)

  • 손정익;김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1992
  • As the automation of nutrient solution management proceeds in the field of hydroponics, effective supporting systems to manage the nutrient solution by computer become needed. This study was attempt to predict the EC of nutrient solution using the neural networks. The multilayer perceptron consisting of 3 layers with the back propagation learning algorithm was selected for EC prediction, of which nine variables in the input layer were the concentrations of each ion and one variable in the output layer the EC of nutrient solution. The meq unit in ion concentration was selected fir input variable in the input layer. After the 10,000 learning sweeps with 108 sample data, the comparison of predicted and measured ECs for 72 test data showed good agreements with the correlation coefficient of 0.998. In addition, the predicted ECs by neural network showed relatively equal or closer to the measured ones than those by current complicated models.

  • PDF

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

Soil Texture and Desalination after Land Reclamation on the West Coast of Korea (서해안 간척지 토성과 탈염)

  • 민병미;김준호
    • The Korean Journal of Ecology
    • /
    • v.20 no.2
    • /
    • pp.133-143
    • /
    • 1997
  • From 1984 to 1989 reclaimed coastal lands in Choongnam Province of the western coast of Korea were studied for soil texture at three sites(Daeho, Hyundai A and Hyundai B) and for desalination one site(Hyundai B). The soil textures of varied sites in Hyundai A were horizontally similar and composed of 39-40% clay, 40-49% silt and 8-14% sand. But those in Da돼 and Hyundai B differed horizontally in the same area and vertically at the same site. Soil texures of Da돼 were composed of 15-17% clay, 30-45% silt and 40-55% sand and those of Hyundai B were composed of 22-45% clay, 26-49% silt and 17-31% sand. The measured electrical conductivity(EC), which represents whole salt content of the reclaimed soil, decreased year by year. The vertical distribution of the EC changed temporally and spatially in the upper zone above a 50 cm depth but not in The lower zone below a 50 cm depth. The EC valus of the soil were inversely proportional to the magnitued of annual precipitation, evaporation and the numbers of rainy days with r equalling -0.97. But the annual decrease of the EC was directly proportional to climatic factors with r=0.7. Salt in the reclaimed land was leached out by the percolative action of surplus rain water, or moved up by evaporation and carried away by running rain water. The running out of the salt on the soil surface was most efficiently carried out over 10 mm precipitation per day.

  • PDF

Comparison of Various EC Sensors for Monitoring Soil Temperature, Water Content, and EC, and Its Relation to Ion Contents in Agricultural Soils (토양 온도, 수분, EC 모니터링을 위한 다양한 EC 센서 비교 및 농경지 토양에서 이온 함량과 EC의 상관관계 평가)

  • Park, Jin Hee;Sung, Jwakyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.157-164
    • /
    • 2021
  • Smart agriculture requires sensing systems which are fundamental for precision agriculture. Adequate and appropriate water and nutrient supply not only improves crop productivity but also benefit to environment. However, there is no available soil sensor to continuously monitor nutrient status in soil. Electrical conductivity (EC) of soil is affected by ion contents in soil and can be used to evaluate nutrient contents in soil. Comparison of various commercial EC sensors showed similar water content and EC values at water content less than 20%. Soil EC values measured by sensors decreased with decreasing soil water content and linearly correlated with soil water content. EC values measured by soil sensor were highly correlated with water soluble nutrient contents such as Ca, K, Mg and N in soil indicating that the soil EC sensor can be used for monitoring changes in plant available nutrients in soil.