• 제목/요약/키워드: Electrical Charging

검색결과 866건 처리시간 0.025초

전기자동차 보급에 따른 기존 아파트의 변압기용량 한계시점에 대한 연구 (A Study on the Transformer Spare Capacity in the Existing Apartments for the Future Growth of Electric Vehicles)

  • 최지훈;김성열;이주
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.1949-1957
    • /
    • 2016
  • Rapid Expansion of EVs(Electric Vehicles) is inevitable trends, to comply with eco-friendly energy paradigm according to Paris Agreement and to solve the environment problems such as global warming. In this paper, we analyze the limit point of transformer acceptable capacity as the increase of power demand considering EVs supply in the near future. Through the analysis of transformer utilization, we suggest methods to analyze the spare capacity of transformer for the case of optimal efficiency operation and emergency operation respectively. We have the results of 18.4~29% spare capacity for the charging infrastructure to the rated capacity of transformer by analyzing the existing sample apartments. It is analyzed that the acceptable number of EVs is 0.09~0.14 for optimal efficiency operation and 0.06~0.13 for emergency operation. Therefore, it is analyzed the power demand of EV will exceed the existing transformer spare capacity in 7~8 years as the annual growth rate of EVs is prospected 112.5% considering current annual growth rate of EVs and the government EV supply policy.

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

전기자동차 보급에 따른 공공임대아파트의 변압기 안정성 평가에 관한 연구 (A Study on the Safety Evaluation of the Transformer for the Public Rental Apartments Considering the Increase of EVs)

  • 최지훈;김성열;이주
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1007-1016
    • /
    • 2017
  • This paper aims to analyze the safety evaluation of the existing transformer for the 0.85 millions of public rental apartments as EVs(Electric Vehicles) increase in order to overcome the environment pollution issue and maintain sustainable development. It is analyzed that the 56.4% capacity of power transformer could secure as EV charging infrastructure, based on the analysis of respective utilization patterns of the housing and power transformer. The acceptable number of EVs is 0.04~0.06 per household from the spare capacity of the power transformer. It is analyzed that EV stock is prospected less than 0.03 per household in 2030, considering the condition of the public rental apartments residents and the growth rate of EVs according to practical scenario. The power demand for EVs is within the allowable capacity range of the power transformer, so the research shows that there is no problem in the stability of the existing transformer until 2030.

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

A New Battery Approach to Wind Generation System in Frequency Control Market

  • Nguyen, Minh Y.;Nguyen, Dinh Hung;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.667-674
    • /
    • 2013
  • Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. This paper presents a new approach to coordination of battery energy storage in wind generation system for reducing the payment in frequency control market. The approach depends on the statistic data of wind generation and the prediction of frequency control market price to determine the optimal variation band which is then kept by the real-time charging and discharging of batteries, ultimately the minimum cost of frequency regulation can be obtained. The optimization problem is formulated as trade-off between the decrease in the regulation payment and the increase in the cost of using battery, and vice versus. The approach is applied to a study case and the results of simulation show its effectiveness.

선택적 충전방식 전하펌프를 사용한 LED 램프 조광구동 기술 (Driving Method for Dimming of LED Lamps using Selectively Charged Charge Pump)

  • 김재현;윤장희;염정덕
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.15-22
    • /
    • 2013
  • A new LED lamp driving technology with a charge pump instead of a conventional DC-DC converter is proposed. The proposed driving technology is used to control the LED lamp with digital dimming. The power loss in the zener diodes is reduced because the charging process of the capacitors is selectively controlled according to the digital control signal. From the experimental results, when dimming four LED lamps simultaneously, the average driving circuit efficiency of 89% is obtained, regardless of the dimming level. White light with color temperature over a range of 2800~7200K was produced by dimming control of red, green, blue and amber LED lamps with the proposed driving circuit. The characteristics of the driving circuits can be changed depending on the characteristics of the R, G, B, and A LED lamps. The efficiency of the driving circuits up to a maximum 89% can also be obtained depending on the combination of LED lamps. The driving technology with digital dimming control for LED lamps proposed in this paper would be effective for obtaining high efficiency in LED driving circuits and remote control of LED lamps using digital communications.

상태공간평균화법에 의한 2차전지 충방전 시스템의 해석 (Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method)

  • 원화영;채수용;이형주;김희선;홍순찬
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF

E-빔 조사된 폴리머의 전하 분포의 축퇴 과정 (Decay Process of Charge Distribution in E-Beam Irradiated Polymers)

  • 윤주호;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.329-330
    • /
    • 2007
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정 (State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network)

  • 홍선리;강모세;정학근;백종복;김종훈
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.