• Title/Summary/Keyword: Electrical Charging

Search Result 866, Processing Time 0.022 seconds

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Control Strategies of Mobility Charging Systems Using PV-ESS Systems (태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법)

  • Kim, Dae-Won;Lee, Hyeon-Min;Park, Sung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

An Improved Wireless Power Charging System Capable of Stable Soft-Switching Operation Even in Wide Air Gaps (넓은 공극 범위에서도 안정된 소프트 스위칭 동작 가능한 개선된 무선 전력 충전 시스템)

  • Woo, Jeong-Won;Moon, Yu-Jin;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.180-191
    • /
    • 2022
  • In this paper, a single-stage alternating current (AC)-DC converter is proposed for the automated-guided vehicle wireless charging system. The proposed converter is capable of soft-switching under all input voltage (VAC: 220 Vrms ± 10%), load conditions (0-1 kW), and air gap changes (40-60 mm) by phase control at a fixed switching frequency. In addition, controlling a wide output voltage (Vo: 39~54 VDC) is possible by varying the link voltage and improving the input power factor and the total harmonic distortion factor. Experimental results were verified by making a prototype of a 1-kW wireless power charging system that operates with robustness to changes in air gaps.

A Study on the Parameters Estimation for SOC and SOH of the Battery (SOC 및 SOH 추정을 위한 파라미터 추정기법에 관한 연구)

  • Park, Sung-Jun;Song, Gwang-Suk;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.853-863
    • /
    • 2020
  • As the battery ages, the internal resistance of the battery increases, so the loss due to the internal resistance increases at the same charging current, causing the battery temperature to rise, which further accelerates battery aging. Therefore, it is necessary to optimize the charging conditions according to the aging of the battery or the current charge amount, and to accurately estimate this, estimation of the parameters of the equivalent circuit is most important. This paper proposes a new measurement technique that can measure the internal resistance of a battery by analyzing a specific high frequency voltage and current applied to the battery. In addition, in order to test the validity of the proposed measurement technique, the current charging amount was estimated based on the measured internal resistance, and the terminal voltage of the constant current charging mode was automatically set and operated. As a result, good results were obtained regardless of the battery voltage. If this equipment is installed in the charging device, it is believed that it will be of great help in the stability management of the aging reusable battery.

Calculation of Distribution Network Charging for DG Embedded Distribution System (분산전원 투입을 고려한 배전망 이용요금 산정에 관한 연구)

  • Hwang, Seok-Hyun;Kim, Mun-Kyeom;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.513-521
    • /
    • 2012
  • With the advent of smart grid, distribution network charges have been one of keystones of ongoing deregulation and privatization in power industries. This paper proposes a new charging methodology to allocate the existing distribution network cost with an aim of reflecting the true cost and benefit of network customers, especially of distribution generator (DG). The proposed charging methodology separates distribution network costs due to the respective real and reactive power flows. The costs are then allocated to network users according to each charge for the actual line capacity used and available capacity. This distribution network charging model is able to provide the economic signals to reward network users who are contributing to better power factors, while penalizing customers who worsen power factors. The proposed method is shown on IEEE 37 bus system for distribution network, and then the results are validated through the comparison with the MW-Miles and MVA-Miles methods. The charges derived from the proposed method can provide appropriate incentives/penalties to network customers to behave in a manner leading to a better network condition.

Power Control of Three Phase PWM Converter for Small-scale Wind Power using Flux Weakening Control in Over Wind Speed Region (과풍속 영역에서의 약계자 제어를 이용한 풍력발전용 3상 PWM 컨버터의 출력제어)

  • Ku, Hyun-Keun;Kim, Jae-Heung;Lee, Hyung-Uk;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • This paper proposes the battery charging algorithm for small-scale wind power generator using three phase PWM converter. it is impossible to control output power of the converter in over wind speed region since back EMF of PMSG is higer than battery voltage. Therefore, battery charging algorithm is proposed to expand battery charging over wind speed region. The suggested method is using the q-axis current for battery charging in the rated wind speed region. In the over wind speed region after it lower back EMF of PMSG using d-axis current it can control output power of the converter. The validity of the proposed algorithm are verified by experiments.

A Study on Performance Improvement of Rechargeable Power Modules (충전식 전원 모듈의 성능 개선에 대한 연구)

  • Ahn, Tae-Won;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.141-145
    • /
    • 2017
  • This paper presents a method to improve Li-ion battery charging speed for portable electronic devices maintaining stable operating temperature. The proposed method uses multiple chargers which consist of a master module and slave modules designed with single wire communication signal for parallel current path in order to simplify the additional hardware needs. A single wire communication signal control between a master module and slave modules makes the number of pins of parts lowered and the required area small, furthermore leading to lower cost. Therefore the proposed charging method can be practically used for implementing battery charging modules requiring high speed Li-ion battery charging.

The Analysis of Surface Degradation Mechanism on PRP(epoxy/glass fiber) by Corona Charging Properties (코로나 대전 특성을 이용한 FRP의 표면 열화메커니즘의 해석)

  • Lee, Baek-Su;Im, Gyeong-Beom;Jeong, Ui-Nam;Park, Jong-Gwan;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.373-378
    • /
    • 1999
  • In order to analyse the degradation mechanism of polymer materials for outdoor condition, FRP laminate was exposed to high temperature and ultraviolet rays. Then, thedegradation process was evaluated by comparing contact angle, surface potential decay, and polarity effect respectively. Especially, the analysis of surface degradation phenomena by corona charging method showed the exact correlation with the result of chemical properties. Therefore we can confirm that the application of corona charging method on the identification of degradation process is very useful. If this method is usedin degradation studies on the polymer surface, it will be more effective on the surface analysis of polymer insulators. With corona charging method and chemical spectrum analysis, it was possible concretely to define degradation process on the polymer surface exposed at the situation of different environmental conditions.

  • PDF

Multilayer Piezoelectric Energy Harvester and Charging Property in Capacitor (다층형 압전세라믹 발전기 제작 및 capacitor 충전 특성)

  • Kim, Hyung-Chan;Song, Hyun-Cheol;Lee, Ju-Young;Jeong, Dae-Yong;Kim, Hyun-Jae;Yoon, Seok-Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.301-302
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. For the driving wireless sensor node, the generated energy is required to store the capacitor or battery. For the rapid charging, higher voltage than battery's capacity voltage and a large current are necessitated. However, the piezoelectric energy harvester is generally featured as a high voltage and low current generator. As it is known that the generated current in the piezoelectric energy harvester is related to an area of electrode of piezoelectric ceramics, we fabricated the multilayer ceramics to increase effective area for the faster charging. The energy harvesting properties and charging characteristics of multilyaer ceramics were investigated and discussed.

  • PDF

Filtration Efficiency of Electrically Charged Air Filters by a Corona Method

  • Murtadlo, Zainul Alim Ali;Joe, Yun-Haeng;Park, Seok-Hoon;Park, Hyun-Seol
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.15-25
    • /
    • 2019
  • The influences of corona charging parameters on collection efficiency and surface potential of air filters were investigated. A polypropylene filter medium was electrically charged using a corona charger, and the resulting surface potential and filtration efficiency against neutralized KCl particles were measured. The filter media was charged under different conditions of applied voltage, voltage polarity, charging time, and distance between electrodes. In addition, we considered charging both sides of the filter as well as charging one side of the filter. As a result, electrical force obtained by charged fiber affected filtration efficiency when the apply voltage strength was higher than 7 kV. Negatively charged filter had higher filtration efficiency than positively charged filter while the surface potential of the negatively charged filter was slightly lower than those of positively charged filter. Moreover, the filtration efficiency increased as the charging time of filter fiber increased and the distance between electrodes decreased. The filtration efficiency was more sensitive to changes of charging time than to those of electrode distance, and the efficiency of both sides charged filter was higher than that of single side charged filter.