• Title/Summary/Keyword: Electric spring

Search Result 159, Processing Time 0.033 seconds

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

A Study on the Signal Processing Method for the Hall Sensorless Position Control of ETC Control System using a BLDC Motor (ETC 구동용 BLDC 제어시스템의 홀센서리스 위치제어를 위한 신호처리기법에 관한 연구)

  • Lee, Sang-Hun;Lee, Seon-Bong;Park, Cheol-Hu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.92-99
    • /
    • 2008
  • This paper describes an signal processing method for the hall sensorless position control of ETC control system using a BLDC motor. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analog voltage output on the throttle valve instead of BLDC motor for detecting rotor position of motor. So the additional commutation information is necessarily needed to control the mentioned ETC module. In order to estimate and determine the commutation state, it is proposed to properly manipulate the resolution of A/D converter considering the mechanical parameter, that is, the number of motor slot and the ratio of reduction gear. Through this method, the estimation of commutation state for operating the system is possible and the discrete signal for commutation is stably obtained. The validity of the method is examined through the experimental results.

A Study on Design of the Compensation System for Wind Energy Generation by Power Storage Apparatus (동력저장장치를 이용한 풍력발전 보상 시스템 설계에 관한 연구)

  • 윤석암;차인수;백행래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.43-48
    • /
    • 2001
  • In conventional wind generation systems, since the blade rotates at low speed when the velocity of wind decreases their operations are possible only under limited conditions. Therefore they are in trouble of self-generation without the help of auxiliary generation devices outside. In addition, most of them have very low usage efficiency because of the characteristic changes of wind. For the solution of these problems and for enough generation regardless of districts and geographical features the rotation energy stored in a spring drives a compact generator and then electric power is stored at battery and supplied to the load continuously according to the lack of wind force. In this paper, the fabricated system consisting of a wind generator and power storage apparatus was introduced and its operation characteristics were analyzed.

  • PDF

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Residential Satisfaction of No-Charge Welfare Facility for the Elderly Integrated with Community Facility (지역시설복합 무료노인복지시설의 거주만족도)

  • 박인영;박경옥
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.89-95
    • /
    • 2002
  • The purpose of this study is to assess the residential satisfaction of no-charge welfare facility for the elderly, and to examine the effect of the integration with pay-training institute on residential satisfaction. The data were collected from staffs and fifty one residents of welfare facility by interview and questionnaire. The statistical analysis was conducted to identify the residential satisfaction. A half of the elderly were aged over seventy five years old, eighty four percents of them were female, and seventy seven percents of them were non-educated. Forty two percents of the elderly considered themselves to be unhealthy, but the ADL data reveals that they are relatively healthy. The most of residents are highly satisfied with whole welfare facility. But, the level of satisfaction on the bathroom, the storing space, the cooking table and the benches were relatively low. These dissatisfactions can be solved by the expanding of the storing space, setting up of a common washing room and electric cooking stove, and the increasing of the number of benches. Also, it was recommended for the elderly to set up the Ondol-style rest room with the western style rest room. The level of satisfaction on the attached training institute with no-charge welfare facility for the elderly were high. This has positive effect on residential satisfaction of the elderly. Therefore, the community integrated welfare facility can be the alternative plan for the enhancement of residential satisfaction and quality of elderly life.

  • PDF

A Study of Power Conversion System for Energy Harvester Using a Piezoelectric Materials (압전소자를 이용한 에너지 하베스터용 전력변환장치 연구)

  • An, Hyunsung;Kim, Young-Cheol;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1059-1065
    • /
    • 2017
  • In this paper, the energy harvester with a piezoelectric materials is modeled as the electric equivalent circuit, and performances of a standard DC method and a Parallel-SSHI method are verified through experiment under variable force and load conditions. Piezoelectric generator consists of mass, damper and spring constant, and it is modeled by electrical equivalent circuit with RLC components. Standard DC and Parallel-SSHI are used as power conversion methods, and standard DC consists of full-bridge rectifier and smoothing capacitor. Parallel-SSHI method is composed of L-C resonant circuit, zero-crossing detector and full-bridge rectifier. In case of simulation under $100k{\Omega}$ load condition, the harvested power is $500{\mu}W$ in Standard DC and $670{\mu}W$ in Parallel-SSHI, respectively. In experiment, the harvested power under $100k{\Omega}$ load condition is $420{\mu}W$ in standard DC and $602{\mu}W$ in Parallel-SSHI. Harvested power of Parallel-SSHI is improved by approximately 40% more than that of standard DC method.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

Examination of excess electricity generation patterns in South Korea under the renewable initiative for 2030

  • Kim, Philseo;Cho, So-Bin;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2883-2897
    • /
    • 2022
  • According to the Renewable Energy 3020 Implementation Plan announced in 2017 by the South Korean government, the electricity share of renewable energy will be expanded to 20% of the total electricity generation by 2030. Given the intermittency of electricity generation from renewable energy, realization of such a plan presents challenges to managing South Korea's isolated national electric grid and implies potentially large excess electricity generation in certain situations. The purpose of this study is: 1) to develop a model to accurately simulate the effects of excess electricity generation from renewables which would arise during the transition, and 2) to propose strategies to manage excess electricity generation through effective utilization of domestic electricity generating capabilities. Our results show that in periods of greater PV and wind power, namely the spring and fall seasons, the frequency of excess electricity generation increases, while electricity demand decreases. This being the case, flexible operation of coal and nuclear power plants along with LNG and pumped-storage hydroelectricity can be used to counterbalance the excess electricity generation from renewables. In addition, nuclear energy plays an important role in reducing CO2 emissions and electricity costs unlike the fossil fuel-based generation sources outlined in the 8th Basic Plan.

Development of the educational management model for dynamic instability analysis in nanocomposite sandwich beam

  • Wenxi Tang;Chunhui Zhou;Maryam Shokravi;X. Kelaxich
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • This paper presents the development of an educational management model for analyzing the dynamic instability of nanocomposite sandwich beams. The model aims to provide a comprehensive framework for understanding the behavior of sandwich micro beams with foam cores, featuring top and bottom layers made of smart and porous functionally graded materials (FGM) nanocomposites. The bottom layer is influenced by an external electric field, and the entire beam is supported by a visco-Pasternak foundation, accounting for spring, shear, and damping constants. Using the Kelvin-Voigt theory to model structural damping and incorporating size effects based on strain gradient theory, the model employs the parabolic shear deformation beam theory (PSDBT) to derive motion equations through Hamilton's principle. The differential quadrature method (DQM) is applied to solve these equations, accurately identifying the improvement in student understanding (ISU) of the beams. The impact of various parameters, including FGM properties, external voltage, geometric constants, and structural damping, on the DIR is thoroughly examined. The educational model is validated by comparing its outcomes with existing studies, highlighting the increase in ISU with the application of negative external voltage to the smart layer. This model serves as a valuable educational tool for engineering students and researchers studying the dynamic stability of advanced nanocomposite structures.

Ultrastructural Changes of the Vas Deferens Epithelium by Season in a Slug Incilaria fruhstorferi (산민달팽이(Incilaria fruhstorferi) 수정관 내강 상피조직의 계절에 따른 미세구조적 변화)

  • 장남섭;정계현;한종민
    • The Korean Journal of Zoology
    • /
    • v.39 no.4
    • /
    • pp.400-409
    • /
    • 1996
  • A study on the ultrastructural changes In the epithellum of the vas deferens by season was conducted for the spdng and summer specimens of a slug Incilarfa fruhstoiferl. The vas deferens of the spdng spedmen was muscular tube about 0.4mm in diameter. Its lumen was divided into three flat grooves and the each groove was subdivided into two subbranches. The luminal epithellal celis of the Vas deferens which were irregular In shape showed strong methylenophilla in a double stain of methylene blue and basic fuchsln. The lumen of the vas deferens was filled with components strongly stained by methylene blue. The circular muscle layers surrounding the luminal epithellum of the vas deferens contained numerous granules arranged at regular intervals. The vas deferens of the summer specimen also was a thick muscular tube showing 0.4 mm in diameter. Its lumen was divided into four grooves but, the each of the grooves was not subdivided to form certain branclees unlikely to the spdng spedmen. The lining epfthelium of the lumen was consisted of simple ciliated columnar cells, irregular columnar cells and conical cells. The histological features were quiet different from those of the spring spedmen which showed irregular cell arrangement. According to electron microscopy the epithelium of the vas deferens in the spring specimen was composed of irregular columnar cells which had irregular shaped nuclei. The nuclei of the epitheilal cells were relatively large in comparison to their cytoplasm. The overall electric density of the cytoplasm was relatively high. The lumen of the vas deferens in the summer specimen was lined by a epfthelium with tail ciliated columnar cells and irregular cells. The unclei of the epithellal cells were long ellipsoid or irregular in shape. Both of the cytoplasm and the nuclei were showed low electric density. in consideration with the observable cell organelles were only ndoplasmic reticulum, lysosomes and microtutules, the cell organelles were poorly developed. The apical surfaces of the epithelial cells possessed brush borders with numerous microvilli and cilia with 9+2 arrangement of microtubules. The circular muscle layers surrounding the epithelium are usually thick and the degree of development of the circular muscle layers seems to be even in the both of the spring and summer specimens.

  • PDF