• Title/Summary/Keyword: Electric sensor

Search Result 1,154, Processing Time 0.032 seconds

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Case study of microseismic techniques for stability analysis of pillars in a limestone mine (석회석 광산 내 광주의 안정성 분석을 위한 미소진동 계측기술의 현장적용)

  • Kim, Chang Oh;Um, Woo-Yong;Chung, So-Keul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study deals with the case that was the field application of the microseismic monitoring techniques for the stability monitoring in a domestic mine. The usefulness and limitations of the microseismic techniques were examined through analyzing the microseismic monitored data. The target limestone mine adopted a hybrid room-and-pillar mining method to improve the extraction ratio. The accelerometers were installed in each vertical pillar within the test bed which has the horizontal cross-section $50m{\times}50m$. The measured signals were divided into 4 types; blasting induced signal, drilling induced signal, damage induced signal, and electric noise. The stability analysis was performed based on the measured damage induced signals. After the blasting in the mining section close to the test bed, the damage of the pillar was increased and rockfall near the test bed could be estimated from monitored microseismic data. It was possible to assess the pillar stability from the changes of daily monitored data and the proposed safety criteria from the accumulated monitored data. However, there was a difficulty to determine the 3D microseismic source positions due to the 2D local sensor arrays. Also, it was needed to use real-time monitoring methods in domestic mines. By complementing the problems encountered in the mine application and comparing microseismic monitored data with mining operations, the microseismic monitoring technique can be used as a better safety method.

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Jeong, Junwoo;Lee, Kijeong;Jeong, Kyunga;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

A Study on the Phobia Treatment Using 3D Virtual Reality System (3D 가상환경시스템 이용한 공포증 치료에 대한 연구)

  • Paek Seung-Eun
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.45-55
    • /
    • 2002
  • Virtual Reality(VR) is a new technology which makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. In this paper, we introduced VR into psychotherapy area and developed VR system for the exposure therapy of acrophobia. Acrophobia is an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used as a treatment. Lately the virtual reality technology has been applied to that kind of anxiety disorders. A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. In this study, the elevator stimulator that composed with a position sensor, head mount display, and audio system, is suggested. To illustrate the physiological difference between a person who has a feel of phobia and without phobia, heart rate was measured during experiment. And also measured a person's HR after the virtual reality training. In this study, we demonstrated the subjective effectiveness of virtual reality psychotherapy through the clinical experiment.

  • PDF

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성)

  • Jeong, Junwoo;Lee, Kijung;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.