• Title/Summary/Keyword: Electric safety

Search Result 1,827, Processing Time 0.039 seconds

Study of Hydrogen Bus Operational Safety Monitoring Method through Driving Data Analysis (주행 데이터 분석을 통한 수소버스 운행안전 모니터링 기법 연구)

  • Hyunmi Lee;Insik Lee;Yongju Yi;Jeong-Ah Jang;Siwoo Kim;Sojung Sim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2023
  • The adoption of hydrogen-powered Elec is expanding globally. Hydrogen is recognized as a potentially hazardous energy source, and safety assessment is crucial for the development of plans to supply hydrogen-powered electric buses. Hydrogen gas leakage can have a significant impact during bus operations, and continuous hydrogen leakage in hydrogen-powered vehicles can result in fatal accidents. In this study, information about hydrogen leakage is collected through sensors installed within the vehicles and is measured when the sensor detects a leak. The study also proposes the use of Pseudo Fuel Leakage (PFL, %) as an additional indicator for evaluating and monitoring hydrogen safety and leakage.

Study on Developing Assessment Guideline for Safety and Performance of Electric Moxibustion Apparatus (전기식 온구기에 대한 안전성 및 성능 평가 가이드라인 개발 연구)

  • Yi, Seung-Ho;Kang, Jung-Won;Nam, Dong-Woo;Kim, Eun-Jung;Lee, Hye-Jung;Kim, Kap-Sung;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.27 no.1
    • /
    • pp.75-86
    • /
    • 2010
  • Objectives : We developed and proposed a guideline for safety and performance assessment of electric moxibustion apparatus (class II medical device). Methods : We drafted the guideline for safety and performance assessment of electric moxibustion apparatus by referring the existing standards, guidelines and measurement data from commercially available products. Temperature characteristics such as maximum temperature and ramp time, and physical characteristics such as weight, noise and diameter were measured. User friendliness was also evaluated for commercial devices. Results : This guideline only can be applied to the electric moxibustion apparatus where moxa is being heated by electricity for medical proposes. Maximum temperature of higher than $50^{\circ}C$ can be achieved mostly. Ramp rate of temperature seems to be reliable. Control of temperature is needed to be improved. Moxa and its derivative products seem to be regulated for reliable temperature performance for clinical application. Requirements for design and development of electric moxibustion apparatus are suggested : temperature indicator, temperature control and its accuracy, safety measure, surge protection, user friendliness and instruction for use (IFU). Design recommendation of the reduction of noise level and energy loss are suggested for better products. Conclusions : We proposed a guideline for safety and performance assessment of electric moxibustion apparatus to improve the quality of relating products and aid their commercialization by aiming higher industrial competitiveness of the medical device sectors in Korea. Discussion with related institutes such as industry, academy and government is further required. Public hearings also need to be held prior to the establishment of a final guideline and standard.

A Study on Safety Evaluation Methods for Electric Multiple Units (도시철도차량의 안전진단평가 기법에 관한 연구)

  • Chung J.D.;Han S.Y;Park K.J.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.374-377
    • /
    • 2005
  • Automobile is in charge of most transportation system in modern urban city. However, in fact, cause of problem of road state, environment, and the other reasons, urban transit system is using as Mass Transit nowadays. Nevertheless Urban transit system is considering many kind of safety fact of that system which is increasing continuously nowadays, it occurs various train accident. This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

  • PDF

Human Reliability Assessment for a Installation Task of Temporary Power Cables in Construction Fields (건설현장 임시전력 배선의 가설직무에 대한 인간신뢰성 평가)

  • Kim Doo-Hyun;Lee Jong-Ho;Kim Sang-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an human reliability assessment(HRA) for a installation task of the temporary power cable in construction fields. HRA is evolved to ensure that the workers could reliably perform critical tasks such as a process of the temporary power cable. Human errors are extremely commonplace, with almost everyone committing at least some errors every day. The considerable parts of electric shock accidents in the construction field are caused by a series of human errors. Therefore it is required to analyze the human errors contained in the task causing electric shock event, the event tree analysis(ETA) is adopted in this paper, and particularly human reliability was estimated for a installation task of the temporary power cables. It was assumed that the error probabilities of the human actions may be obtained using the technique for human error rate prediction(THERP). The results show that the predominant task on reliability in the cable installation tasks is check-out tasks and the probability causing electric shock by human errors was calculated as $1.0\times10^{-9}$.

Analysis of Resistive and Capacitive Leakage Current according to Wiring Type and Length at Cattle Barn (우사(牛舍)에서 전기배선의 종류와 길이에 따른 저항성 및 용량성 누전전류 분석)

  • Yoo, Sang-Ok;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.34-39
    • /
    • 2014
  • This paper is aimed to prevent danger of electrical fire at cattle barn to detect resistive and capacitive leakage current component for wiring type and length. In order to analysis for electric leakage component for cattle barn sizes and normal buildings, this paper was studied field state investigation which are at cattle barn companies(10 companies) in Cheong-won location and normal buildings at Nam-bu market in Jeon-ju location. Market to deduce the problems of electric leakage component is analyzed. The resistive and capacitive leakage current component for wiring type and length is analyzed at Beon-young cattle barn. Results show that electric leakage component suggested in this paper are valuable and usable to electrical fire in leakage current based on environment factor, which will prevent severe damage to human beings and properties and reduce the electrical fires in cattle barn. It is acceptable for electrical equipment use in an cattle barn.

Study on the reform case about a bad connection of M.Tr 87Ry 2nd CT circuit etc. (M.Tr 87Ry 2nd CT 회로 오결선 등 개선사례 분석)

  • Park, Kang-Seo;Park, Jun-Sung;Choi, Jong-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.374-378
    • /
    • 2008
  • The analysis about cases which does not correspond in electric equipment technical standard and judgement standard while doing pre inspection, it improves the technical specifications and the draft of construction plan. The analysis of the reform cases prevents the electric disaster and propagates the electrical safety. Hereafter the reform cases will improve the electric technical ability and help the electrical safety of the yard.

  • PDF

A Study on the Safety of Organic Compound Type Thermal Fuse (유기물가용체형 온도퓨우즈의 안전성에 관한 연구)

  • 황명환;정영식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1996
  • To protect the damages or the disasters caused by overheating of industrial electric equipments or electric home appliances, a temperature sensitive thermal fuse is generally used in those equipments. Thermal fuses cutoff the current flow when the temperature of the electric equipments are abnormally overheated and over the certain temperature. Therefore thermal fuse is one of the most important elements in the sense of safety. Thermal fuses are classified into two types according to thermally sensitive materials, a low temperature melting alloy and an organic chemical compound. Domestic products of thermal fuses are now only with an organic chemical compound. Domestic products tested by using cutoff test and aging test etc. are satisfied UL specification. It's shown that the accuracy and the precision of the domestic products are as good as those of the overseas products obtained UL mark. However, some of domestic products show the reclosing problem which is mainly related the safety. This problem should be solved to make the reliable thermal fuses. In this paper, our Interest is to find out the causes of reclosing. In the comparison between thermally sensitive materials occurred reclosing and those occurred no reclosing, the test effects show that the characteristics of emitting heat and absorbing heat are different.

  • PDF

An Analysis of Combustion Characteristics of Residential Facilities through Real Fire Tests in a Small Residential Space (소규모 주거 공간 실물화재실험을 통한 적재 가연물의 연소특성 분석)

  • Yang, So Yeon;Moon, Min Ho;Won, Jeong Hun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.73-79
    • /
    • 2022
  • In this study, real fire tests were performed on representative combustibles of residential facilities to analyze the fire behavior and combustion characteristics in a small residential space. The considered combustibles were a sofa, a combination of a desk and a chair, and a combination of a mattress and an electric mat. A compartment space fire test was performed using the room corner test equipment prescribed in the KS F ISO 9705 specification. Three real fire tests were conducted by placing the combustible material inside a small compartment with insulation and finishing materials and by igniting the combustible material. Results showed that the peak heat release rate and peak smoke production rate occurred in the combination of the mattress and electric mat. Furthermore, from the result of the fire rate analysis, it was estimated that the fire risk of the mattress and electric mat combination was the highest, followed by the sofa and thedesk and chair combination.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

Analysis of Worker Exposure Space according to Distribution of Electromagnetic Field of Generator (발전기의 전자기장 분포 특성에 따른 작업자 노출공간 분석)

  • Seong, Minyoung;Kim, Doo-Hyun;Kim, Seungtae
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.20-28
    • /
    • 2021
  • With an increase in the commercialization of electricity, and the development of advanced and large electric devices and various wireless radio wave services, concerns over the effects of electromagnetic fields on human health have increased. Accordingly, the World Health Organization encouraged the development of international standards by establishing the 'International Electromagnetic Fields Project' in 1996 based on studies on the harmful effects of electromagnetic fields on the human body. Moreover, the National Institute of Environmental Health Sciences (NIEHS) classified electromagnetic fields as possible carcinogens under Group 2B category, even though they have been found to have a weak correlation with those effects on human health. Mid-to-large-sized electric facilities used at industrial sites mostly adopt a commercial frequency of 60 Hz, and workers handling these facilities are exposed to such extremely low frequency (ELF) fields for a long time. A previous study suggested that exposure to ELF electromagnetic fields with frequency ranges from 0 to 300 Hz, even for a short time, at densities higher than 100 μT may have harmful effects on human body as it affects the activation of nerve cells in the central nervous system by inducing an electric field and current and stimulating muscles and the nervous system in the body. Such studies, however, focused on home appliances used by ordinary people, and research on facilities utilizing high-capacity current and operated by workers at industrial sites is lacking. Therefore, in this study, a 3000 kilowatt generator, which is a high-capacity electric facility employed at industrial sites, was investigated, and the size of the magnetic fields generated during its no-load and high-load operations per distance to produce a map was measured to reveal spots deemed hazardous according to domestic and international exposure standards. The findings of this study is expected to alleviate workers' anxiety about the harmful effects of magnetic fields on their body and to minimize the level of exposure during operations.