• Title/Summary/Keyword: Electric safety

Search Result 1,827, Processing Time 0.027 seconds

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

A Measurement of the Exposure Rates by Terrestrial y-rays in Taegu Area (대구지역(大邱地域) 지각(地殼) ${\gamma}$-선(線)의 조사선량율(照射線量率) 측정(測定))

  • Chang, Si-Ho;Jeong, Chun-Gyun;Kang, Hee-Dong;Lee, Mo-Sung;Choi, Mun-Kyu;Kim, Wi-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.121-132
    • /
    • 1994
  • This study concerns about the measurement and the investigation of environmental radiation characteristics which the components and the distribution of exposure rates by terrestrial y-rays in Taegu area. $4^{'}{\phi}{\times}4^{'}$ NaI(T1) scintillation detector with a multichannel analyzer was used in the measurement of y-rays as a part of in-situ spectrometry at twenty eight different locations in this area. The conversion into the exposure rate from the measured ${\gamma}-ray$ spectrum has been carried out leading to a net exposure rate and component ones by $^{40}K,\;^{238}U$ series and $^{232}Th$ series products which are known by the major parts in the terrestrial ${\gamma}-rays$ generally. As a result, the average exposure rate by the terrestrial ${\gamma}-rays$ in Taegu area is $9.4{\mu}R/h$ and the distribution of individual exposure rates shows more or less differences between these locations even after the consideration of diurnal and yearly variations which are always involved in these measurements. The component parts of exposure rates are distributed $^{40}K\;2.9{\sim}4.6{\mu}R/h,\;^{238}U$ series $1.2{\sim}3,\;1{\mu}R/h,\;^{232}Th$ series $2.5{\sim}5.0{\mu}R/h$ over the measured locations.

  • PDF

A Experimental Study on the Determination of Construction method of Controled Low-strength Material Accelerated Flow Ability Using Surplus Soil for Underground Power Line (지중송전관로용 급결 유동성 뒤채움재의 시공법 설정에 관한 실험적 연구)

  • Oh, Gi-Dae;Kim, Dae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.84-93
    • /
    • 2010
  • Compaction of backfill material of Underground power lines is difficult, especially under pipeline. so it could cause structural problem because of low compaction efficiency. So various methods have been taken to solve the problem and one of them is CLSM(Controled low-strength material accelerated flow ability). But In other countries, these are already in progress for a long time to research and development and recently on practical steps. But, in our country, study for only general structures, not for underground power line structure that is being constructed at night rapidly. In this study, we performed property tests and indoor & outdoor test (3 cases). The tests showed flow ability reached at the limit construction(160 mm) flowability by 9 to 15 minute after starting to mix, and construction buoyant is lowering after placing CLSM by 70 % of theoretical buoyant that is calculated by unit weight of material. In this paper, we performed indoor tests and outdoor tests to estimate mechanical properties and to suggest construction method(using batch plant, setting spacer at 1.8 m and placing at 2m) for CLSM that using surplus soil. And the test showed good results for construction quality, workability and structure safety.

  • PDF

Security of Ethernet in Automotive Electric/Electronic Architectures (차량 전자/전기 아키텍쳐에 이더넷 적용을 위한 보안 기술에 대한 연구)

  • Lee, Ho-Yong;Lee, Dong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.39-48
    • /
    • 2016
  • One of the major trends of automotive networking architecture is the introduction of automotive Ethernet. Ethernet is already used in single automotive applications (e.g. to connect high-data-rate sources as video cameras), it is expected that the ongoing standardization at IEEE (IEEE802.3bw - 100BASE-T1, respectively IEEE P802.3bp - 1000BASE-T1) will lead to a much broader adoption in future. Those applications will not be limited to simple point-to-point connections, but may affect Electric/Electronic(EE) Architectures as a whole. It is agreed that IP based traffic via Ethernet could be secured by application of well-established IP security protocols (e.g., IPSec, TLS) combined with additional components like, e.g., automotive firewall or IDS. In the case of safety and real-time related applications on resource constraint devices, the IP based communication is not the favorite option to be used with complicated and performance demanding TLS or IPSec. Those applications will be foreseeable incorporate Layer-2 based communication protocols as, e.g., currently standardized at IEEE[13]. The present paper reflects the state-of-the-art communication concepts with respect to security and identifies architectural challenges and potential solutions for future Ethernet Switch-based EE-Architectures. It also gives an overview and provide insights into the ongoing security relevant standardization activities concerning automotive Ethernet. Furthermore, the properties of non-automotive Ethernet security mechanisms as, e.g., IEEE 802.1AE aka. MACsec or 802.1X Port-based Network Access Control, will be evaluated and the applicability for automotive applications will be assessed.

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Smart Battery System of Lithium ion Batteries (리튬이온전지의 Smart Battery System)

  • Kim Hyun-Soo;Moon Seong-In;Yun Mun-Soo;Ko Beyng-Hi;Park Sang-Kun;Shin Dong-O;Yoo Seong-Mo;Lee Seung-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.132-137
    • /
    • 2001
  • Recently, the demand for notebook PC with lithium ion batteries has steadily increased and consumers require them to adopt a SBP(smart battery pack) able to predict the remaining capacity and the run time of batteries precisely. The SBP is composed of a protection If, by which safety of lithium ion batteries is maintained against overcharge, overdischarge and overcurrent, and a smart IC, which calculates the remaining capacity and the remaining run time. The protection IC shut abmormal current down by using overcharge/overdischarge FET. A SBS(smart battery system) is composed of a system host, a smart battery and a smart battery charger. The smart ICs for SBP will be required to provide a low cost, low current consumption and small size. There will need to develop a microcomputer control type IC and an optimum algorism which is able to predict the residual capacity and the residual run time precisely. SBS will apply to many kinds of industry fields such as an electric bicycle, an electric vehicle, a load levelling and a military.

Study on Stable Use of Stainless EAF Oxidizing Slag as Fine Aggregate of Concrete (스테인리스 전기로 산화슬래그의 콘크리트용 잔골재 활용방안 검토)

  • Cho, Bong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2014
  • Recently, more focus is shift to imbalances in aggregate market supply and demand and an exhaustion of natural resources. In this situation, Electric arc furnace oxidizing slag (EAF Slag) has high application possibility as aggregate for concrete due to similar property with general aggregate. In this study, We've got the plan to assure the chemical stability of EAF Slag, and then experimentally tested the mechanical performance and durability for the fine aggregate used EAF Slag. On this test result, we suggest the application plan. At the result of this study, it shows that EAF slag would reduce the surface defect such as pop-out due to natural aging for the fixed hour and adjustment the grain size of EAF Slag. And mechanical performance and durability according to the replacement rate of concrete service, were revealed more than equal or equal compare to general aggregate. Hereafter, quality control must precede not to impede the beauty of concrete surface as assure the safety for aging and processing. And, to establish the environmental resource recycling system for by-products of steel, it should be made development of various application and guideline of quality control for the EAF slag aggregate. Moreover, it must be constantly studied all kind of engineering performance and durability for related to this study.

Analysis of Metabolism and Effective Half-life for Tritium Intake of Radiation Workers at Pressurized Heavy Water Reactor (중수로원전 종사자의 삼중수소 체내섭취에 따른 인체대사모델과 유효반감기 분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • Tritium is the one of the dominant contributors to the internal radiation exposure of workers at pressurized heavy water reactors (PHWRs). This nuclide is likely to release to work places as tritiated water vapor (HTO) from a nuclear reactor and gets relatively easily into the body of workers by inhalation. Inhaled tritium usually reaches the equilibrium of concentration after approximately 2 hours inside the body and then is excreted from the body with a half-life of 10 days. Because tritium inside the body transports with body fluids, a whole body receives radiation exposure. Internal radiation exposure at PHWRs accounts for approximately 20-40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Thus, tritium is an important nuclide to be necessarily monitored for the radiation management safety. In this paper, metabolism for tritium is established using its excretion rate results in urine samples of workers at PHWRs and an effective half-life, a key parameter to estimate the radiation exposure, was derived from these results. As a result, it was found that the effective half-life for workers at Korean nuclear power plants is shorter than that of International Commission on Radiological Protection guides, a half-life of 10 days.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology (PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용)

  • Wang, Haitao;Min, Byung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • In recent years, with the rapid development of large and medium-sized urban rail transit in China, the total operating mileage of high-speed railway and the total number of EMUs(Electric Multiple Units) are rising. The system complexity of high-speed EMU is constantly increasing, which puts forward higher requirements for the safety of equipment and the efficiency of maintenance.At present, the maintenance mode of high-speed EMU in China still adopts the post maintenance method based on planned maintenance and fault maintenance, which leads to insufficient or excessive maintenance, reduces the efficiency of equipment fault handling, and increases the maintenance cost. Based on the intelligent operation and maintenance technology of PHM(prognostics and health management). This thesis builds an integrated PHM platform of "vehicle system-communication system-ground system" by integrating multi-source heterogeneous data of different scenarios of high-speed EMU, and combines the equipment fault mechanism with artificial intelligence algorithms to build a fault prediction model for traction motors of high-speed EMU.Reliable fault prediction and accurate maintenance shall be carried out in advance to ensure safe and efficient operation of high-speed EMU.