• Title/Summary/Keyword: Electric propulsion

Search Result 433, Processing Time 0.03 seconds

Hardware passive power control simulation of hybrid propulsion system for electric propulsion aircraft (전기추진 비행기용 하이브리드 추진시스템 패시브 전력제어 하드웨어 시뮬레이션)

  • Park, Poo-Min;Lee, Kang-Yeop;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.544-547
    • /
    • 2011
  • This paper describes on hardware simulation of passive power control of propulsion system for electric propulsion aircraft of KARI. The propulsion system uses hybrid power system that is composed of solar cell, fuel cell and battery. The fuel cell is replaces by simulator due to its difficulty in handling while the other components are the same as that will be used on board. As the result, reliable power supply for propulsion is confirmed and each power source is well operated showing its characteristics.

  • PDF

Study on Operating Performance Estimation Process of Electric Propulsion Systems for 2.5 Displacement Ton Class Catamaran Fishing Boat (쌍동형 배수량 2.5톤 급 어선의 전기 추진 시스템 운항성능 추정 프로세스 연구)

  • Jeong, Yong-Kuk;Lee, Dong-Kun;Jeong, Uh-Cheul;Ryu, Cheol-Ho;Oh, Dae-Kyun;Shin, Jong-Gye
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Because the environmental regulations for ships are getting tighter, green ships employing eco-friendly technology have recently received a large amount of attention. Among them, various studies for electric propulsion ships have been carried out, particularly in the United States, European Union, and Japan. On the other hand, research related to electric propulsion ships in Korea is in a very nascent stage. In this paper, an estimation process based on the rough requirements of ship-owners for the operating performance of electric propulsion ships is proposed. In addition, the estimation process is applied to a small fishing boat for verification of the process. These results are expected to be used as design guidelines in the early stage of the design process for electric propulsion ships.

A Study on the Application of a Fully Electric Propulsion System for Geostationary Missions (정지궤도위성의 완전 전기추진시스템 적용방안 연구)

  • Choi, Jaedong;Park, Bongkyu
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.26-34
    • /
    • 2022
  • The propulsion system of geostationary orbiting satellites is typically used to raise the orbit into a transfer orbit, maintain the orbital position in the south/north, east/west direction in regular operation, and accumulate momentum in the south/north and east/west direction. Recently, when an electric propulsion system is used in a geostationary orbit satellite, the payload capacity can be increased by about 40% compared to a chemical propulsion system. However, despite these advantages, using an electric propulsion system has several limitations that should apply to all geostationary orbiting satellites. This paper discusses the operational constraints to consider when developing an indigenous geostationary satellite using a fully electric propulsion, radiation exposure, and control mechanism design due to unit displacement and floating ground-design. A high-voltage control unit for electric drives were analyzed.

Study on Performance Prediction of Electric Propulsion System for Multirotor UAVs (멀티로터 무인항공기의 전기추진계통 성능예측에 대한 연구)

  • Jeong, Jinseok;Byun, Youngseop;Song, Woojin;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.499-508
    • /
    • 2016
  • This paper describes a study of performance prediction of an electric propulsion system for multirotor UAVs. The electric propulsion system consists of motors, propellers, batteries and speed controllers, and significantly affects performance characteristics of the platform. The performance of the electric propulsion system for multirotor UAVs was predicted using an analytical model derived from the characteristics of each component, operation experiments and statistical analyses. Ground performance tests and endurance flights were performed to verify the reliability of the proposed performance prediction method. A quadrotor platform was designed to demonstrate the parcel delivery service used in the endurance flight. From the result of verification tests, it was confirmed that the proposed method has a good agreement.

Comparison Analysis on Efficiency and Operating Characteristic between Induction and BLDC Motor according to the Load Variation Based on Battery Power Source for Electric Propulsion System of Small Ships (소형 선박 추진용 축전지 전원 기반 유도모터와 BLDC모터의 부하별 운전 특성 및 효율 비교 분석)

  • Yeong, T.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • This paper aims at investigation some operating characteristics and energy usage efficiency of a induction motor and a BLDC motor considering electric propulsion system in a small ship based on battery source. At first, performance curves of discharge voltage from the battery and current from each motor according to the load variations were analyzed. Next, variations of motor torque and rotational speed versus load change at each motor were analyzed. Finally, efficiency of energy usage of the battery and available navigation distance were compared each other. Through some comparisons and analyses, it was cleared that the BLDC motor is more suitable for the motor of the electric propulsion system in small ships based on battery source. It is expected that the results can be used as useful data for design of the electric propulsion system with batteries.

Prediction and Analysis of the Energy Consumption Considering the Electric Railway Vehicle's Driving (전기철도차량의 주행 중 에너지 소비 특성 예측 및 분석 연구)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.777-781
    • /
    • 2012
  • In this paper, an electrical power simulation program was developed to predict the energy consumption of the electrical railway propulsion system, which considered the actual operating conditions of the electric railway vehicles. The developed program was designed to predictable the energy consumption during a virtual driving in the actual route of the virtual railway vehicles equipped with a propulsion system consisting of power conversion equipments and traction motors. In addition, the accuracy verification of the electrical power simulation program for a propulsion system was performed by using a real power consumption data, which was measured during the driving of the railway vehicles in the Gyeongui Line. In conclusion, the electrical power simulation program for a propulsion system was validated throughout a comparative investigation between the simulated values and the experimental values and the energy consumption characteristics of electric railway vehicles on the existing route or the new route will be possible to predict throughout the virtual simulation considering the driving conditions of the electric railway vehicles.

Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system (전기로 추진되는 일반 프로펠러 항공기의 초기 사이징)

  • Han, Hye-Sun;Shin, Kyo-Sic;Park, Hong-Ju;Hwang, Ho-Yon;Nam, Taewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.391-403
    • /
    • 2013
  • Propeller aircraft propelled by an electric propulsion system is gaining a renewed interest because of ever-increasing environmental concern on harmful emissions emitted from conventional jet engines and national energy security. Traditional aircraft sizing methods are not readily applicable to electric propulsion aircraft that utilize a variety of alternative energy sources and power generation systems. This study showcases an electric propulsion aircraft sizing exercise based on a generalized, power based sizing method. A general aviation aircraft is propelled by an electric propulsion system that comprises of a propeller, a high temperature super conducting motor, a Proton Exchange Membrance(PEM) fuel cell system fuelled with hydrogen, and power conditioning equipment. In order to assess the impact of technology progression, aircraft sizing was conducted for two different sets of technology assumptions for electric components, and the results were compared with conventional baseline aircraft.

Research on application possibility of superconductivity motor for war ship Propulsion system (초전도모터 추진시스템 함정에 적용가능성 연구)

  • Kim, Jong-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.40-43
    • /
    • 2003
  • An electric propulsion system integrated with the ship service distribution system offers the naval architect considerable flexibility, and often the choice of a more affordable ship to acquire and operate as compared to a segregated mechanical drive option. United States of America navy announced in 2000 that they selected the electric propulsion system on next generation warship. Specially there is excellent advantages in superconductivity motors which can have higher efficiency, less vibration and noise, smaller dimensions compared with the conventional motors. The 5 MW HTS motor for warship test of electric propulsion was developed and tested. Also it was contracted between AMSC and United States of America navy to develop a 36.5 MW HTS motor in 3 years since March 3, 2003. This paper deals with the technical development tendency of HTS motors in foreign countries as well as in domestic, and it is focused on the application of HIS motors to the electrical propulsion system.

  • PDF

Wind Tunnel Test on Propellers for Middle Size Electric Propulsion UAV (중형 전기추진 무인기용 프로펠러 풍동시험)

  • Park, Poo-Min;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek;Kwon, Ki-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.784-788
    • /
    • 2011
  • Wind tunnel test on 20" class propellers are carried out at KARI's low speed wind tunnel (LSWT). The test was done to select most efficient propeller for middle size electric propulsion UAV of KARI. The propellers are commercially available 20" class folding type propellers made of carbon fiber composite material. As the result, 21"${\times}$15.5" propeller was selected whose efficiency is 66% at cruise condition.

  • PDF

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.