• 제목/요약/키워드: Electric fraction

검색결과 210건 처리시간 0.023초

Change of Percolation Threshold in Carbon Powder-Filled Polystyrene Matrix Composites

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.119-124
    • /
    • 2015
  • This paper investigates the change of the percolation threshold in the carbon powder-filled polystyrene matrix composites based on the experimental results of changes in the resistivity and relative permittivity of the carbon powder filling, the electric field dependence of the current, and the critical exponent of conductivity. In this research, the percolation behavior, the critical exponent of resistivity, and electrical conduction mechanism of the carbon powder-filled polystyrene matrix composites are discussed based on a study of the overall change in the resistivity. It was found that the formation of infinite clusters is interrupted by a tunneling gap in the volume fraction of the carbon powder filling, where the change in the resistivity is extremely large. In addition, it was found that the critical exponent of conductivity for the universal law of conductivity is satisfied if the percolation threshold is estimated at the volume fraction of carbon powder where non-ohmic current behavior becomes ohmic. It was considered that the mechanism for changing the gaps between the carbon powder aggregates into ohmic contacts is identical to that of the connecting conducting phases above the percolation threshold in a random resister network system. The electric field dependence is discussed with a tunneling mechanism. It is concluded that the percolation threshold should be defined at this volume fraction (the second transition of resistivity for the carbon powder-filled polystyrene matrix composites) of carbon powder.

입자 함유율의 변화에 따른 나노 실리카 복합재료의 마모 특성 (Wear characteristics on particle volume fraction of nano silica composite materials)

  • 이정규;고성위
    • 수산해양기술연구
    • /
    • 제49권4호
    • /
    • pp.492-499
    • /
    • 2013
  • The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.

Piezoelectric and Acoustic Properties of Ultrasonic Sensor Using 2-2 Piezocomposites

  • Lee, Sang-Wook;Nam, Hyo-Duk;Ryu, Jeong-Tak;Kim, Yeon-Bo
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.215-218
    • /
    • 2005
  • We have investigated on the development of 2-2 piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 piezocomposites sensor which were fabricated using dice-and-fill technique for the different volume fraction of PZT. The resonance characteristics measured by an impedance analyzer were similar to the analysis of finite element method. The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics shows that the 2-2 piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

  • PDF

일반 위너-호프 제어기의 상태 공간 표현에 관한 연구 (State space representation of the general Wiener-Hopf controller)

  • 박기헌;최군호
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.301-307
    • /
    • 1998
  • 이 논문에서는 다항식 서로소 인수로 표시되는 위너-호프 제어기의 계산상의 어려움을 극복하기 위하여 상태공간 변수 공식이 개발되었다. 위너-호프 인수 행렬을 이용하여 주어진 다항식 서로소 인수로부터 안정 유리행렬의 서로소 인수를 구하였으며 이 결과를 이용하여 위너-호프 제어기의 공식을 유리행렬의 서로소 인수로 표현한 후 이를 이용하여 상태공간 계수를 구하였다.

  • PDF

EMC Simulation을 이용한 GaAs/AlGaAs 양자 우물 내 전자의 충돌 이온화율 (Impact Ionization Rates of Electron in GaAs/AlGaAs Qunantum Well Using EMC Simulation)

  • 윤기정;홍창희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.221-225
    • /
    • 1994
  • We described the impact ionization rates of electron in GaAs/AlGaAs MQH(multi- quantum well) using EMC(ensenble Monte Carlo) simulation. Hot electron energy of injected into quantum well is increasing nearly liearly due to the applied electric field to the barrier of MQM inspite of various Al mole fraction in AlGaAs or barrier width. Impact ionization rates are decreasing exponentially by increasing Al mole fraction, and they have peak vague due to the barrier width.

3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구 (Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids)

  • 김종록;안예찬;김무환
    • 대한기계학회논문집B
    • /
    • 제34권11호
    • /
    • pp.1027-1033
    • /
    • 2010
  • 2상유동(기체-액체) 현상은 전자기발전, 원자력발전, 철강산업 등 유체 시스템에 자주 나타나는 현상으로, 2상유동을 파악하는 것은 유체 시스템의 안정성 및 성능을 위해 중요하다. 2상유동 특성 중 기공률은 압력강하와 열전달 성능을 결정하는 주요 인자로서 이를 측정하는 기술이 특히 중요하다. 유동의 임피던스를 측정하여 기공률을 산정하는 임피던스법은 전기적 특성을 이용하기 때문에 반응속도가 빨라 실시간 측정이 가능하며, 유동관 벽에 전극을 설치할 경우 유동 교란없이 측정할 수 있는 장점이 있다. Coney는 원형관에 적용할 수 있는 ring 임피던스미터를 이론적 연구하였다. 본 연구에서는 Coney가 이론적으로 제안하고 실험적으로 검증하지 못한 3-ring 임피던스미터의 유체 전기전도도에 대한 독립성을 실험적으로 검증하였다.

ER클러치의 성능실험에 관한 기초적 연구 (Fundamental Study on Performance Experiment of ER Clutch)

  • 김도태;장성철;염만오;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.66-71
    • /
    • 2001
  • In this work, an ER clutch has been constructed and its characteristics have been evaluated by adapting an electro-rheological fluid(ERF) as an operating medium. ER fluids are suspensions which show an abrupt increase in rheological properties under electric fields. An ER clutch system using ER fluid is a new conception device because an apparent viscosity of ER fluid can be changed by apply an electric field. As a first, Bingham properties of ER fluids are experimentally distilled as a function of electric field. We use the disk type ER clutch in which the ER fluid fills the annular space between a pair of coaxial disk electrodes and experiment results show that the measured revolution per minute was increased with the increase of the electric field. The ER fluid used in the present study consists of weight fraction 35% in zeolite suspended silicone oil.

  • PDF

Electrorheology of the Suspension Based on Chitosan Adipate as a New Anhydrous ER Fluid

  • Choi, Ung-Su;Ko, Young-Gun
    • KSTLE International Journal
    • /
    • 제2권2호
    • /
    • pp.142-145
    • /
    • 2001
  • The electrorheology of the chitosan adipnate suspension in silicone oil was investigated. Chitosan adipnate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the chitosan adipnate suspension exhibited a linear dependence on the volume fraction of particles and an electric field power of 1.88. The experimental results for the chitosan adipnate suspension correlated with the conduction models and this suspension was found to be an anhydrous ER fluid.

  • PDF

전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구 (Electrorheology of Chitosan Suspension by Conduction Models)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

Electrorheological Properties of Chitin and Chitosan Suspensions

  • 최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.