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State Space Representation
of the General Wiener—Hopf Controller
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1. Introduction
In the past decade, the H, design for the

generalized plant model has been the interest of many
researchers[1]{2][3]. An important step in deriving the
H, optimal controller formula is to describe the plant

transfer matrix as a coprime fraction(CF). Two kinds
of CFs, polynomial CF and stable rational CF, are
widely used. The latter one is convenient to develop
state-space representation of the controller formula
and hence is popular nowadays. In this case, however,
the plant transfer matrix and the controller are usually
confined to be proper ones, which excludes many
practical industrial applications such as PID controllers.
In the contrast, the polynomial CF approach can treat
the improper plant and controller cases. Furthermore,
the polynomial CF approach is conceptually simple and
its algebraic properties have long been studied[4], and
hence found its applications in many areas[5][6][7].
The only disadvantage of the polynomial CF approach
method seems to lie in its computational difficulty.
The aim of this paper is to show that this difficulty
of the polynomial CF method in the H, design

problem can be circumvented when the plant has
state-space representation.

Doyle et alll] presented the H, controller formula
in the state-space form and hence the plant is limited
to be proper. Hunt et al[2] used polynomial methods
to derive the optimal H, formula. Park and
Bongiornol3] derived the frequency domain Wiener-
Hopf solutions to the generalized plant model by using
polynomial CF method. It is often not easy to compute
the optimal controller transfer matrix in [2](3]
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because efficient algorithms to calculate spectral
factorization and pole-zero cancellation are lacking.
However, the problem setting in [3] is far more
general than that of [1] in that the improper plants
and controllers are not excluded and the exogenous
input to the generalized plant can include not only
the white noises but also the shape-deterministic
functions such as step or ramp reference inputs, which
is not the case in [1]. In this paper, state-space
representation of the frequency domain solutions in [3]
is sought. A similar work was done in [8] for the
three-degree-of -freedom configuration modell9]. The
work iIn this paper is distinguished from the earlier
one in that state-space parameters of the controllers
are systematically obtained by using the technique of
rationalizing polynomial CF descriptions.

Throughout the paper, only real rational matrices are
considered and the notations G !, GT and TrG
are used for the inverse, transpose and trace of the
matrix G, respectively. The matrix G.(s) stands for
GT(—5s) . In the partial fraction expression of G(s),
the contributions made by all its finite poles in
Re s<), Re s>() and at s= oo are denoted by
{G}., {G) - and {G}w, respectively. The notation
{G}. implies the strictly proper part of G(s). It is
obvious that {G}.={G}+ + {G}_ . The order relation-
ship G(s)<O(s*) means that no entry in G(s)

k .
grows faster than s as s-—oo., The conventional

A|B
= C(sI—A) 'B+ D is used
C|D

I1. Preliminaries
In this chapter, the main results of [3] conceming

notation

the optimal H, controller are summarized. Consider

the standard feedback control system in Fig 1, where
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Fig. 1. The standard feedback system model.
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We assume that the exogenous input w(s) is white
noise and its power spectral density is the identity

u(s) =C(s) ¥(s)

matrix. The H, optimization problem is to find the

controller that minimizes the cost function

__1 o
E=55 f_,-oo T L Toun (8) Touf)] 1)

under the internal stability constraint where T, is

the transfer matrix from w to z. The problem
setting in [3] is far more general than the one above.
Here, we sacrifice the generality to develop
state—-space representation.

: The plant P(s) is free of hidden
poles in Re s=0 and
rm=v," (2)

Assumption 1

where ¥, and ¥,, denote the characteristic denomi-
nators of P(s) and Py(s), respectively and the monic
polynomials &," and ¥, * absorb all zeros of ¥,

and ¥,, in Re s=(, respectively. Let
Py = A"Ys)B(s)=B,(s) A7 (s) )

where (A,B) is a left and (B;,A;) is a right
coprime pair of polynomial matrices. There always
exist polynomial matrices X(s), Y(s), Xi(s) and Yi(s)
such that

Xl Yl Al - Y =
[ 25 Al % | =1 @
A1Y1= YA )

with detX - detX,#0. Under the assumption 1, the
set of all stabilizing controllers is characterized by

C(s) =—(Y(9)+ A() K(HNX(s)— B () K(s)) "' (6)

where K(s)is any real rational matrix analytic in
Re s=(.Consider Wiener-Hopf spectral factorizations of

A1:P12-P12A1 = A.A (D

and
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APZIPZI‘A* - .Q.Q* (8)

Assumption 2 : The matrices PPy and Py Po.
are full rank para-Hermitian and nonnegative definite
on the finite s=jw axis. The inverses A~ ! and
27! are analytic on the finite s= jw axis.

Assumption 3 : The rational matrix Pj;(s) is strictly
proper. That is,

Py()< 0(s™h 9

Assumption 4 : The difference T, Py Py;.) — T(IT.)
is analytic on the finite jw ~axis where

()= A APy, P Py AT (10)

Assumption 5 :A_IF.Q_I-—Af 'Y is analytic on the
finite jw -axis.

Assumption 6 : The following order conditions are

satisfied;
(PyPy) ™' < O(s"), (PpPp) ™' < 0(s%) (1)
Py(s) < 0(s") (12)
Theorem 1 : 1) The set of all stabilizing controllers

that yield finite cost E is generated by the formula
in (6) with

K(s) = —AT"({AAT' YR},
—{r-AA7'vQ} .+ 207" 13)
where Z(s) is an arbitrary real rational matrix
<0(s™") which is analytic in Re s=0.

2) The stabilizing C(s) that minimizes E is given by
(6) with

K(s)= —A ' ({AAT'YR}
—A{r-aA4've} Q! (14)

3) Let the minimum cost E be denoted by E. Then
for any allowed Z(s)

— B+l (7
E=E+~- [ T(zZ)ds=E 5

4) The following order relations hold for C(s)
generated by K(s) in (13);

Cls)< O(s™h (16)
R(s)= C(I—P»0) '< O(s™ Y an

The optimal formula in (13) requires the numerical
calculations such as spectral factorization, partial
fraction and pole-zero cancellation, which often make
it difficult to compute the optimal controller transfer
matrix directly in the frequency domain. In the next
chapter, state-space representation of the controller
transfer matrix in (13) is sought to overcome the
computational difficulties.
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III. Main results

The Wiener-Hopf controllers in (6) and (13) are
described in terms of polynomial doubly coprime
fraction (DCF) in (3) and (4). In the section 1 of this
chapter, stable rational DCF representation of the
Wiener-Hopf controllers will be sought as a
intermediary to develop state-space representation. In
section 2, state-space representation of the controllers
in (6) and (13) are obtained.
1. Wiener-Hopf controllers in terms of stable rational
doubly coprime fractions

We first construct a stable rational DCF for Pay(s)

from the polynomial DCF in (3) and (4).
AAT'YQ)

Multiplying [A —{ o
0 2

-1
e ]on the left and

[A*l ATHAAT'YR)
0 Q
equation (4) yields

[ X1 ?1][%;11 _X7]=1 as)

] on the nght to the

-B Z
where
X\ =AX,+{AA['YQ} Q7 'B
Vi=AY,—{AA]'YQ} QA (19.1)
X=B A {AA['YQ} + XQ,
Y=YQ-A AN {AA'YQ) (19.2)
B=Q'B, A=0Q7'A,
A =AA"", B=BA™! (19.3)
It should be noticed that
A'B=B A, '=Pu( (20)

Lemma 1 : Suppose that Assumptions 2 and 6 are
satisfied. Then, the expression in the equation (18) is
a stable rational DCF for Py(s) and the eight matrices
in (19) are irrelevant of a particular choice of
polynomial DCF in (3) and (4).

Proof : Irrelevant property of the eight matrices will
be shown first. Consider a polynomial DCF

[X; ﬁ] 4 __Y]=1 @1
—-B A B, X

which is different from the one in (4). The relation
between two DCFs can be characterized by

X, =VX,6 Y =Vly,

A, =A,V, B =BV (22.1)
X=XU"' Y =YU !
A =UA, B =UB (22.2)

where U and V are unimodular polynomial

matrices. The Wiener-Hopf factors in (7) and (8) for
EEK and B become AV and UL,

respectively, and it is a trivial practice to show that
the eight matrices in (19) made by the DCF in (21)
are not changed. Next, it will be shown that the eight
matrices are all proper and analytic in Re s=0.
Obviously, the eight matrices are all analytic in

Re s=20 because A~! and £ ' are analytic -in
Re s>0 by assumption. The matrices A; and A
are proper. In fact, it follows from (7) and (8) that

(P Pp) ™' = A4 A AL (23)
and
(PyPy) ' = AR Q7A (24)
By the order conditions in (11), we can conclude that
AA7's o), 97'A< o(5") (25)
The propemess of Bﬂ and B is obvious because
B,=P»n A, and B= AP, where P, is proper

by assumption. As for X 1 in (19.1), applying the
identity

{AAT'YR) = AAT'YQ— {AAT'YR)  (%6)
to the equation in (19.1) vields
X, =AX,+ AA]'YB- {AA]'YR} Q°'B
=AX,+ AY\A"'B— {AA]'YQ} 27'B
= A(X, + Y\BIAT) - {AA]'YQ} 0°'B

= AAT' - {AA]T'YQ} Q7'B @7

which is proper. In a similar way, we can show that
?1, X and Y are proper and this completes the
proof. Now, it is possible to describe the controller in
(6) and (13) in terms of the stable rational DCF.
Invoking the stable rational MFD, it follows from (6)
and (13) that

C(s) = —[Y-A A7 ({AA] 'Y},
—{r-AA;'YQ} +2)271]
- [ X+BAT{AATYR)
—{r-AAT'YQ), +2)7'17!

= —[YR-A A Y AAT'YQ}
+A A= Z+{I—AA; 'Y} )]
- [ XQ+ B AT AAT YR},

—B AN = Z+{AA'YR+ T} )]
=—[V+ A(-Z+{I'—AA]'YQ} )]
(X B(-Z+({r-4A'YR )1 @1

2. State~space representation of the Wiener-Hopf controller
Suppose that the plant FP(s) in Fig. 1 is described



ROt - RiSat - NAEISS ==2A1 M4 dH M3z 1986

by the internal description

Fl G G
P(s) = Py(s) Ppls) ]:—. H, 01 ]12 (29)
Py(s) Px(s) Hy| Jo J»

and the state-space parameters satisfy that

i) (F, Gy, Hy) is controllable and observable,

ii) f;y and Jy have column and row rank,
respectively and
F—jwl Gy

H, 12
F—jol G,

Hy, Ja

The three assumptions above are standard ones in

iii) ] has full column rank for all w

and ] has full row rank for all w.

H, or H. problems [1]. In the expression in (29),

it should be assured that the matrix F includes all
modes of the all subsystems that consist of the
generalized plant P(s). Assumption i) is sufficient to
the interal stabilizability condition in (2). Assumption
il) is always satisfied in correctly posed optimization
problems. Assumption iii) is closely related to the
assumption that A~! and ' are jw-analytic in
Assumption 2. The aim of this section is to show that
the Wiener-Hopf controller formulas in (28) can be
represented by state-space parameters under the
standard conditions in i), i), iii) and (29). We first
find state-space representation of the stable rational
DCF developed in section 3.1.
Lemma 2 : Let

(sI—F) " 'Gy= By(s) A7 () (30)
be a right coprime fractional description. Then A(s)

in (7) and A;(s)=A(s)A '(s) are obtained by the
formulas

1
A() =R (A () + K \By(s)) (31
and

As) =A()AYs)
_1
=[I+K,(sI-F)'G)] 'R, 2

1
= [I-K,(sI- F+ G,K)) "'GJR, * (32
where
Ry =Jh ] (33)
K\=R'( Jo,"H+ G,"M)) (34)

and M, is the stabilizing solution of the ARE
(F—GRy ' i " H) ™M,
+M(F—G, R, Jiy"H) — M\G,R'GIM,
+H{(I=Jp Ry Jp") Hi=0 (35)

The inverse A~ !(s) is analytic on the finite jw —
axis.
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Proof : It should be noted that we can take the
denominator matrices of right coprime fractions of

Py(s) and (sI—F) 'G, to be the same because
(F, Gy, Hy) is minimal. Now a little algebra from
(35) yields

Piu(s)Py(s) =[K\(s[=F) ' Gy + I, Tl

K (sSI—-F) 7 'G, + I (36)

and multiplying A;. on the left and A, on the right
yields

A1(8) Pipu(8)Pp (A (5) =

[A1()+ K BA(9].JJo[A1 (9 + K1 By(9)] (3D

It can be readily shown that (A;(s) + K,By(s)) ' is
analytic in Re s=0. In fact, def(K,(s[—F) 'G,
+1) = del(sI— F+ GyK,) [ det(sI— F) and at the
same  time det(K, (sI—F) 'Gy + ) = def( A,(s) +
K By(s)) [ detA,(s). Since ndet(sI— F) = det A,(s),
7 a constant, it follows that det(A,(s)+ K By(s))
= pdef(sI— F+ G,K,;) which is strict Hurwitz. Hence,
it is clear that (A;(s)+ K By(s)) ™' is analytic in
Res=0 and (JLJ3) %(Al(s)-i-Kle(s)) is a
Wiener-Hopf factor A(s) and it is obvious that

A7Ys) is analytic on the finite s=jw axis. The
formula (32) is from (30) and (31). |
In a similar way, we can obtain the following
lemma and its proof is omitted.
Lemma 3 : Let

Hy(sI— F) " '= A71(5) By(s) (38)

be a left coprime fractional description. Then £2(s) in

(8) and A (s)=(s) 'A(s) are obtained by the
formulas

1
As) = (A + By (9)K,) R (39)
and

-1
A(s) =Q‘1(ls>A(s) =R, *[I+Hy(sI-F) 'K,]™!
=R, [I-HysI-F+KH) 'K}l (40

where
Ry=JouJ3, (41)

K, = (MHI + GJI)R;! 42)
and M, is the stabilizing solution of the ARE
(F — G\ J3Ry 'H)M,
+ My(F—G\JnR; 'Hy) " — MyHI Ry ' Hy M,
+ G (I—- JER; )G =0 (43)

The matrix £ '(s) is analytic on the finite s= jw
axis.
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It should be remarked that the assumption iii) is
required to guarantee the existence of the stabilizing
solutions of the AREs in (36) and (43). The following
lemma is needed to find state-space representation of
the stable rational DCF in (19).

Lemma 4 :

1 1
{AAT'YQ }, =R’ K\(sI— F) 'K,R,> (44

Proof : For the proof, see Appendix.

Once state-space parameters of 2 ‘A, Al/l_l, and
{AA7'YQ}, are obtained, finding state-space
parameters of the eight matrices in (19) is trivial
State-space B=Q'B and
Bfl = BIA*1 are easily obtained by using the identities
Q'B=02""APy and BA '=PuA A" As for
X, Y, X and 7Y, the identity in (27) is used.
After straight algebra, we obtain the following formulas.

parameters of

Lemma 5 : State-space parameters of the stable
rational DCF in (18) and (19) are given by

X} (S) ?1(3)

— B(s) A(s
F—KZHQ ‘ GZ_KQJZQ Kz
= 1 1 (45)
RZ’K, R} 0
_1 _1 _1
~Ry 'Hy | Ry ' Ry P
and
Al (5) - ?(S)
Bi(9 X(s)
_1 1
F_ GzKI G2R1 2 K2R22
= 1 (46)
—Kl Rl 2 0
L 1

Hy—JnK\| JoR, ° Ry

It should be remarked that the above state-space
parameters have been derived via the Wiener-Hopf
factors in (7) and (8) and hence the above parameters
yield the identities

AI*PIZ*PIZ Al =1 47
and
APZIPZI* A, =] (48)

That is, the matrices Pj,A; and AP, are inner and
coinner, respectively, and these properties play an
important role in developing H,; and H, theories.
Now we are ready to present the main theorems.

Theorem 2 : Suppose that the plant (s) in Fig. 1
has the internal description in (29) with the
assumptions 1), ii) and iii). Then

1) The assumptions 1 through 6 in chapter 1I are all

satisfied.
D (r-AA'YQ)Y, =0 (49)
3) The set of all stabilizing controllers that yield
finite cost E in (1) is generated by the formula
C(s)= (= Y(s)+ A(s) Z(s))
(X + Bi(9Z(s) ! (50)
where Z(s) is any arbitrary real rational matrix

< O(s ') which is analytic in Res = 0.

4) The optimal controller C(s) that minimizes E
is given by

Cls) = — 7(s) X' 1)

which corresponds to the choice Z(s) = 0.

5) Let the minimum cost E be denoted by E.
Then for any allowed Z(s),

— 1
E=E+ o= [ TA22)ds = B (2

Proof : For the proof, see Appendix.
To describe state-space parameters of the controller
in (50), we define some notations. For given matrices

T V(s) Vip(s) _ [ Mu(s) Mio(s)
O =[ i ] ma =] e )

let us denote the homographic transformation of ¢(s)
with respect to V{(s) as

W od()=( Vyg+ Vi) Vyad+ Vi)' (53)

and denote the linear fractional transformation (LFT)
of #(s) with respect to M(s) as

M(s) o ()= My+ Mpd(I— Mpd) 'My (34)

A homographic transformation of ¢(s) can be converted
to a LFT of ¢(s) by the relationship Vo ¢ = Mo ¢

VieVa' V= VipVa'Vy
(55)

Where[ Mll MIZ] =

a e Va' ~Va'Va

When state-space parameters of V(s) are given by

W(s)= [ 11;11 Viz , (56)
21

sz]_ H,
2

state-space parameters of M(s) in (55) are given by

My M
M(s)= [ 11 12]
My My

F—GyJn 'H ’GZ Jn ' Gi—GyJn ']

H = JoJo "Hy \Jo o™ Tu—T2 Jo 'y
— Jo 'H, Tz} — T Ty

(57)

Now, using the notation in (53), we can write from
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(50) that

A, —
C(s) = [ o Z (58)
B X

which is a homographic transformation form. From an
implementation point of view, LFT form is often more
convenient. Applying the formula in (55) to (58) yields
the LFT form for C(s) where state-space parameters
are direct form (46) and (57).

Theorem 3 The controllers in (50) can be
re-written as

C(s) =L(s)oZ (59)

where
- —1
Lo=["TX ' A+TX BI]
X - X Bl
1

F—GoK\— Kty + KoKy | Ky (Gy—KoJw) Ry °

_ —— |60
- K, 0 R ?
. I
— R " (Hy—J2K) R, - R "Iz R

Finally, it should be remarked that the controllers in
(59) can be implemented as in Fig. 2 and it is free of
unstable hidden modes.

u y
| e -
- Z(s)

Fig. 2. Implementation of the controller.

IV. Conclusion

Computational  difficulty of the  Wiener-Hopf
controller comes from the fact that it is described in
terms of a polynomial doubly coprime fraction (DCF).
"In this paper, this computational difficulty is
circumvented by developing state-space representation
of the Wiener-Hopf controller. State-space parameters
of the controller are obtained in two steps. Firstly, a
stable rational DCF is constructed from the polynomial
DCF of the given plant transfer matrix and
state-space parameters of the state rational DCF are
obtained. Secondly, the Wiener-Hopf controller
formulas in terms of the polynomial DCF are
transformed into the formulas in terms of the stable
rational DCF constructed in the previous step and
then the state-space parameters of the stable rational
DCF are used to obtain state-space representation of
the controller formulas. It is shown that the resulting
state-space solutions are equivalent to the ones in [1].
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Appendix
Proof of Lemma 4 : From (32}, (39), (30), and (5),

AAT'YQ
1 1
= R*(U+K\(sI-F)7'G)Y (A+ B;K,) R, *

1 1 1 1
= R *Y(A+B;K)) R,? + R\ 2K\B,Y; R, °
1 1
+ R, *K\(sI-F)"'G,YBK, R, * (al)
Hence,
{AAT'YRQ),

= R, %Kl{ (sI—F)"'G,YBs} K; R, H (a2)
It follows from (38) and (29) that B = B3G,+ Alxn
and therefore AX+ BY=AX+ B3Gy Y+ AJpY=1.
Now, XB3+ A 'ByG, YB3+ Jp YB3= A" 'Bj so that
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(X+JnY)B;+ H, (sI—F) 'G,YBs
=H, (sI-F)~" (a3
Multiplying sk, k =0 1, 2, -, on both sides an
using the identity
s¥(sI—F) '=s* 11+ 5% F
+o+ PR R (I-F) 7 @)
yields the results

HFY{(sI— F) 'G,YBy} = HLFH(sI— F) '} (a5)

Since the observability matrix for (F, H,) has

column rank, we can conclude that
{(sI-F)7'Gy YB3} ={(s[- F) 7},

=(s[-F)™! (ab)
and this completes the proof. [ |
Proof of Theorem 2 : 2) from (47), (48) and (10),
r—-ANA,"'yQ
= A, AL Pp Py — PpYAP) Py ALY (al)

It will be shown that P;,—PpYAP;, is a
polynomial. Since
Pyu=H\(sI—F) " 'Gy+Ju= H\B,A; '+ ]1; a8
and
Py =Hy(sI—F) 'Gy+ Joy=A 'B:G,+ ]y, (@9)
Py — PpYAP,,
= H\(sI— F)"'G,— HiBA{ 'Y (B3G,+ AJ)
—JY(B3G, + Ala)
= H[(sI— F)"' — BA{'YBs] G,
— HiByA[ ' YA — JoY(ByGy + Al)
=H,[(sI—F) ' (s[— F) 'G,YB;]G,
— H\ByY\Jo — JuY(B3G, + Al) (al0)
By the identity in (a6), the first term of (al0) is a
polynomial and hence P;;— P, YAP,; is a poly-
nomial. From (a8) and (a9), we see that AP, and
P A, are polynomials so that {I'—A A,7'YQ}, =0.

ut 7| 3

19783 AMgd  Hr|FEH £
1980 & distd AWriEdy &4
(A1Ah). 19801 ~1983 3 ALt
wA7]Fsta ADZAL 1987 W)=
Polytechnic University Z¢ (&3t
AD. 1988\ ~1990 = AAEA
@A Agdega Az FE

1) Assumptions 3 and 6 are obviously satisfied.
Since the plant P(s) in (29) is free of unstable
hidden modes, it follows that defs[—F)=
T,(s) - h(s) where h(s) is a strict Hurwitz
polynomial. Hence the condition in (2) is equivalent to
the one that det(sI— F)/detA,(s) is a strict Hurwitz
polynomial, and this is true if and only if
(F, Gy, H;) is stabilizable and detectable. As for
Assumption 2, the full rank properties of Jo and [
assure that PP, and Py Po. are of full rank

and para-Hermitian and =0 on the s=jw axis.
From now on, let us say that a rational matrix is
‘good’ if it is analytic on the finite part of the s= jw
axis. The inverses A~ ! and Q' are good by
Lemmas 2 and 3. The matrix A 'TQ'—A{'Y in
assumption 5 is good since A '(I'— AA;'YQ)Q7!

is good by (49). It only remains to show that
assumption 4 is satisfied. It is well known that when

Py, A, is inner there always exists a stable U(s)
such that [Py, A, | U,] is square inner and hence
Py A, APy =1—- U,U,. Similarly, we can
find a stable U,(s) such that [‘2{(221] is square
therefore Py Au APy =I—UpnU,.

Using these equations, we obtain after a little algebra
that T,(Pu Pn*) - T}/(FP*) = Tr(Pll Pll*Ua Ua*

+ PyUpn Ui — PaUnUpP11UU,).  Next,  we
will show that U,.P;; and P; U are all good. As
a particular choice for U,(s), we can take U,(s)=
(H,—]2K\) (sI= F+ GyK)) 'G,+ ], where GIM,
+J'H, =0, JIJ,=1, J57,=0. We can obtain after
UnPy = {G M, (sI- F

which is good. In a similar way, we

coinner  and

a short algebra that
+G,K) 'G,)
can show that P, U is good and this completes

*

the proof. The proofs of 3), 4) and 5) are direct from
Theorem 1. [ |
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