• Title/Summary/Keyword: Electric field interference

Search Result 104, Processing Time 0.024 seconds

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

A Study on Linkage Integration Control System Using Power Line Communication(PLC) and Wireless Sensor Network(WSN) (전력선 통신과 무선 센서 네트워크 기술을 이용한 연동 통합제어 시스템에 관한 연구)

  • Ji, Yun-il;Lim, Kang-il;Park, Kyung-sub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.733-736
    • /
    • 2009
  • Power Line Communication(PLC) is need not additional communication line. So establishment expense is inexpensive and application is simple. Therefore, lower part network of various application field is possible. However, there are high subordinate interference and noise problem on limited transmission data and communication interference element. Wireless Sensor Network(WSN) is need not infrastructure, Self-regulating network architecture of sensor nodes is possible. So at short time, network construction is available. But, power consumption is increased by active sensing for QoS elevation and unnecessary information transmission, low electric power design and necessity of improve protocol are refered to life shortening problem and is studied. In this paper, supplement problem of power line communication and wireless sensor network mutually and because advantage becomes linkage integration control system using synergy effect of two technologies as more restriction be and tries to approach structurally control network that is improved for smooth network environment construction. Honeywell's hybrid sensor network does comparative analysis(benchmarking). Confirm performance elevation proposing teaming of power line communication and wireless sensor network. Through simulation, service delay decreases and confirms that performance elevation.

  • PDF

Temperature Control of Injection Molding Machine using PI Controller with Input Restriction (PI 제어기의 입력제한을 이용한 사출 성형기 온도제어)

  • Jang, Yu-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.604-610
    • /
    • 2007
  • Injection molding is the most common method of shaping plastic resins for manufacturing a variety of parts. This injection molding is accomplished by injection molding machines (IMM) which consists of a hewer, a reciprocating screw, barrel assembly, and an injection nozzle. The plastic resin is fed to the machine through the hopper and it should be heated to the target melting temperature, which depends on material properties, as closely as possible with very small temperature overshoot in the barrel. Since the barrel, which has temperature dependent specific heat and thermal conductivity in the operating temperature range, is heated by the several electric heater bands, it is not an easy task to control the temperature of the barrel owing to the interference of neighboring heaters and its material properties. Though PID controller with auto-tuning capability is widely adopted in the nm, the auto-tuning process should be carried out whenever the operating temperature is changed significantly. Recently, though the predictive controller is developed and shows good performance, it has drawbacks: 1. Since the heat transfer modeling process is very complicated and should be carried out again when the barrel is changed, it is somewhat inappropriate in the field. 2. The controller performance is not validated in whole operating temperature range. In this paper, cascade type simple PI controller with input restriction is proposed to find the possibility of controlling the barrel temperature in the whole operating temperature range. It is shown by experiment that the proposed controller shows good performance. This result can be applied to design of PI controller with auto-tuning capability.

Non-Contact Gesture Recognition Algorithm for Smart TV Using Electric Field Disturbance (전기장 왜란을 이용한 비접촉 스마트 TV 제스처 인식 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.124-131
    • /
    • 2014
  • In this paper, we propose the non-contact gesture recognition algorithm using 4- channel electrometer sensor array. ELF(Extremely Low Frequency) EMI and PLN are minimized because ambient electromagnetic noise around sensors has a significant impact on entire data in indoor environments. In this study, we transform AC-type data into DC-type data by applying a 10Hz LPF as well as a maximum buffer value extracting algorithm considering H/W sampling rate. In addition, we minimize the noise with the Kalman filter and extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensors. We implemented the DTW gesture recognition algorithm using extracted data and the time delayed information of peak values. Our experiment results show that average correct classification rate is over 95% on five-gesture scenario.

A Study on the Corner Effect of Fin-type SONOS Flash Memory Using TCAD Simulation (TCAD 시뮬레이션을 이용한 Fin형 SONOS Flash Memory의 모서리 효과에 관한 연구)

  • Yang, Seung-Dong;Oh, Jae-Sub;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Lee, Sang-Youl;Lee, Hee-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.100-104
    • /
    • 2012
  • Fin-type SONOS (silicon-oxide-nitride-oxide-silicon) flash memory has emerged as novel devices having superior controls over short channel effects(SCE) than the conventional SONOS flash memory devices. However despite these advantages, these also exhibit undesirable characteristics such as corner effect. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this paper, the corner effect of fin-type SONOS flash memory devices is investigate by 3D Process and device simulation and their electrical characteristics are compared to conventional SONOS devices. The corner effect has been observed in fin-type SONOS device. The reason why the memory characteristic in fin-type SONOS flash memory device is not improved, might be due to existing undesirable effect such as corner effect as well as the mutual interference of electric field in the fin-type structure as reported previously.

The Studies on Qigong state Using EEG, fMRI, EAV and SQUID Measurments (EEG, fMRI, EAV 및 SQUID장치(裝置)를 이용(利用)한 기공현상(氣功現狀) 측정(測定))

  • Jeong, Chan-Won;Choi, Chan-Hun;Yoon, Wu-Sik;So, Cheal-Ho;Na, Chang-Su;Jang, Kyeong-Seon
    • Korean Journal of Acupuncture
    • /
    • v.21 no.2
    • /
    • pp.1-28
    • /
    • 2004
  • Objectives : Human physiological changes in the state of qigong has been measured using EEG(Electroencephalography), functional MRI(functional Magnetic Resonance Image), EAV(Electro-Acupuncture according to Voll) and SQUID(Superconducting Quantum Interference Device) measurements. Methods & Results : EEGs were measured to study the differences between Qigong masters and Qi receiver on the changes of EEG. During Qigong, an alpha waves were increased. The power spectra indicate that the peak frequency of alpha waves increased during Qigong. Qi receiver's EEG signals seemed to affected by the state of himself. Brain activation did not observed when qigong master concentrates the Qi at Laogong(P8). But a localization of fMRI signal in the sensory cortex was observed by electric acupuncture stimulation at Laogong(P8). Five phase deviation of EAV were clearly changed in the both cases of Qigong master and Qi receiver. When a Qigong master concentrates the Qi at Yintang, Laogong(P8), Qihai(CV6) meridian points during Qigong state, the change of magnetic field around acupoints Yintang, Laogong points has been measured using 40-Channel DROS-SQUID apparatus. After smoothing process of the continuously measured magnetic signal around acupoints for a few minutes, we could observe that a series of peaks, magnitude of -1.0~2.5pT appeared. But there was no significant difference in changes of magnetic signal around acupoints. Physical signals of magnetocardiogram has been measured by using 2-Channel DROS SQUID(Magnetocardiogram). Physical signals of magnetocardiogram were clealy changed at the ST segments after S-wave when qigong master concentrates the Qi.

  • PDF

A Study on the Effects of Various Portable Wireless Communication Equipments on the Medical Equipments (각종 휴대용 무선 통신기기가 의료기기에 미치는 영향에 관한 연구)

  • 배한길;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.392-400
    • /
    • 1999
  • In this paper, the electromagnetic immunity of electronic medical equipments was tested by employing a standard test method for medical equipments. In addition, the electromagnetic interference to the medical equipments caused by four different types of mobile phones such as portable transceiver, analog, digital, and PCS cellular phones, have been studied. In this study, 16 medical equipments of 11 different types were investigated. There are a patient monitor, an infusion pump, a neonatal incubator and so on. In the case of the EMS test, the interferences were detected for seven medical equipments of four different types(53.3%) such as the patient monitor. For the two portable transceivers, 12 medical equipments of eight different models (75%) were affected. All medical equipments were satisfied with electromagnetic immunity by analog, digital and PCS cellular phones. The experiment results show that the malfunction of the electronic medical equipments is dependent on the frequency range and the electric field strength of the mobile phones.

  • PDF

A Classification of lschemic Heart Disease using Neural Network in Magnetocardiogram (심자도에서 신경회로망을 이용한 허혈성 심장질환 분류)

  • Eum, Sang-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2137-2142
    • /
    • 2016
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. In this study, the signals obtained magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUID) system, and the clinical significance of various feature parameters has been developed MCG. Neural network algorithm was used to perform the classification of ischemic heart disease. The MCG signal was obtained to facilitate the extraction of parameters through a process of pre-processing. The data used to research the normal group 10 and ischemic heart disease group 10 with visible signs of stable angina patients. The available clinical indicators were extracted by characteristic point, characteristic interval parameter, and amplitude ratio parameter. The extracted parameters are determined to analysis the significance and clinical parameters were defined. It is possible to classify ischemic heart disease using the MCG feature parameters as a neural network input.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.