• 제목/요약/키워드: Electric energy storage

검색결과 652건 처리시간 0.029초

Superconductor Flywheel Energy Storage System

  • Sung, T.H.;Han, Y.H.;Han, S.C.;Choi, S.K.;Jeong, N.H.;Yun, H.J.;Park, B.S.;Kim, K.J.;Oh, J.M.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2003년도 High Temperature Superconductivity Vol.XIII
    • /
    • pp.18-18
    • /
    • 2003
  • PDF

Development and Validation of an Energy Management System for an Electric Vehicle with a split Battery Storage System

  • Becker, Jan;Schaeper, Christoph;Rothgang, Susanne;Sauer, Dirk Uwe
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.920-929
    • /
    • 2013
  • Within the project 'e performance' supported by the German Ministry of Education and Research (BMBF) an electric vehicle, powered by two lithium-ion battery packs of different capacity and voltage has been developed. The required Energy Management System (EMS) in this system controls the current flows of both packs independently by means of two individual dc-dc converters. It acts as an intermediary between energy storage (battery management systems-BMS) and the drivetrain controller on the vehicle control unit (VCU) as well as the on-board charger. This paper describes the most important tasks of the EMS and its interfaces to the BMS and the VCU. To validate the algorithms before integrating them into the vehicle prototype, a detailed Matlab / Simulink-model was created in the project. Test procedures and results from the simulation as well as experiences and comparisons from the real car are presented at the end.

25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험 (A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage)

  • 홍원표;원종수;이송엽;이승원
    • 대한전기학회논문지
    • /
    • 제37권10호
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF

독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계 (Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

전동차 회생에너지 활용을 위한 저장시스템 적용기술 연구 (A study on technical application of recycle energy storage system for electric rail car)

  • 김길동;이한민;오세찬;이장무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.307-309
    • /
    • 2006
  • There are operated the six thousand train in the interior of a country. 95% of them are possible usage of resuscitation. Especially, Among them VVVF-Inverter vehicle has a merit of the highest recycle rate. but we don't use a apt recycled energy. Although the existing recycle energy used inverter method supply with electric power, it is decided in accordance with the state of sources. So efficiency of recycled electric power is of poor quality and catenary-voltage-fluctuation be generate because of recycled electric power. and it is able to affect system of safety train service. We'll research the method of supply according to wire condition after storing recycle energy made during train's stopping relation to Advanced EMU Research. Those methods are divided SMES, Fly-Wheel and Supercapacitor, and Considering the both economical efficiency and system application, we'll develop recycle energy storage system suitable our country condition.

  • PDF

전동차 회생 에너지 저장 시스템 개발에 관한 연구 (Development of recycle energy storage system on electric rail car)

  • 김길동;김종대;이한민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.660-664
    • /
    • 2005
  • There are operated the six thousand train in the interior of a country, $95\%$ of them are possible usage of resuscitation, Especially, Among them VVVF-Inverter vehicle has a merit of the highest recycle rate, but we don't use a apt recycled energy. Although the existing recycle energy used inverter method supply with electric power, it is decided in accordance with the state of sources. So efficiency of recycled electric power is of poor quality and catenary-voltage-fluctuation be generate because of recycled electric power. and it is able to affect system of safety train service. We'll research the method of supply according to wire condition after storing recycle energy made during train's stopping relation to Advanced EMU Research. Those methods are divided SMES, Fly-Wheel and Supercapacitor. and Considering the both economical efficiency and system application, we'll develop recycle energy storage system suitable our country condition.

  • PDF

소형 전기에너지저장장치 운전조건에 따른 방사 및 전도 방해에 관한 연구 (A Study on Radiated and Conducted Noise for Small Electrical Energy Storage System due to Its Operating State)

  • 정중일;안건현;김용성
    • 전기학회논문지P
    • /
    • 제64권1호
    • /
    • pp.18-22
    • /
    • 2015
  • When using a secondary battery in energy storage units, if the grid is in light duty the active power is stored so it can be used when the grid is in heavy duty. This makes possible for the load equalize and make the grid optimized. Recently the government is trying to propagate this technology. Depending on its capacity this kind of electric energy storage unit is used in adjusting the frequency, break up the energy peak in summer and winter, stabilize the energy output of renewable energy which can change unstably because of the environment. Which makes it possible to stabilize the grid. It is anticipated that market of 120 trillion won will be developed worldwide in 2030. Currently in Korea a steady supply is in progress. However because of stray electromagnetic waves some other electronics are malfunctioning. This paper covers the research in the method to detect the emission noise in small electric energy storage units using lithium secondary batteries and battery management system, Power conditioning systems with CIPSR standards. And the research of a more efficient method to measure such stray electromagnetic waves.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.