• Title/Summary/Keyword: Electric conductivity

Search Result 957, Processing Time 0.029 seconds

Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL) (전기이중층에 의한 나노유체의 열전달율 향상)

  • Jung, Jung-Yeul;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

Low-Noise Detector Design for Measuring the Electric Conductivity of Liquids (액체의 전기 전도도 측정을 위한 저잡음 검출기 설계)

  • Kim, Nam Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, design of a conductivity detector using a synchronous demodulation is presented to detect the electric conductivity of liquids with low noise. For the purpose, the detector is constructed by the combination of a carrier generator, conductivity detecting cell, and synchronous demodulator. The signal-to-noise ratio(SNR) of the detector is improved by adjusting the frequency bandwidth of the demodulator, whereby infinitesimal conductivity signals can easily be measured under various noise environments. As an application example, a conductivity detector, which is applied to the air monitoring in a fabrication process of semiconductor chips, is designed using the synchronous demodulation. The validity of the design technique is verified by experiments. Since experimental results are shown to approach the design performance of the detector, the synchronous demodulation proves to be useful to the design of a conductivity detector for measuring the infinitesimal electric conductivity of liquids.

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment (고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구)

  • Lee, Min-Gyu;Chung, Geun-Sik;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers

  • Choi, Woong-Ki;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.243-246
    • /
    • 2013
  • In this work, electroless Ni-plating on polyethylene terephthalate (PET) ultra-fine fibers surfaces was carried out to improve the electric conductivity of the fiber. The surface properties of PET ultra-fine fibers were characterized using scanning electron microscopy, X-ray diffraction, and contact angle analyses. The electric conductivity of the fibers was measured using a 4-point testing method. The experimental results revealed the presence of island-like nickel clusters on the PET ultra-fine fibers surfaces in the initial plating state, and the electric conductivity of the Ni-plated fibers was enhanced with increasing plating time and thickness of the Ni-layers on the PET ultra-fine fibers.

The Effect of Additive on the Electric conductivity of Insulating Oil (절연유의 전기전도에 미치는 첨가제의 영향)

  • 정광현;김영봉;김용운;임헌찬;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.158-161
    • /
    • 1996
  • The static charges are generated by streaming electrification phenomena in insulating oil flowing by force for the purpose of cooling at the internal of Ultra-high power transformer. In this thesis, their elimination method was studied. In this paper the effect of Additive on the electric conductivity of Insulating oil is studied. The variation of electric conductivity disappear when Additive is molten in insulating oil BTA(Benzotriazole) appear more variation of electric conductivity than that of SP-S10(Sorbitan mono-stearate). But the variation is not enough to decrease streaming electrification of insulating oil($\sigma$>10$\^$-12/[S/cm]).

  • PDF

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.

The Effect of Sintering Time in the Microstructure and Electric Conductivity of $(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$ System ($(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$계의 소결시간에 따른 미세구조와 전기전도도)

  • 임용무;장복기;신동선;김동근;김종빈;윤성도
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1099-1107
    • /
    • 1998
  • In this study, the microstructure and electric conductivity of 5mol% $Gd_2O_3$-5mol% $Y_2O_3-ZrO_2$ system(5G5YZ) with a variation of sintering time at $1600^{\circ}C$ were investigated. By the result of TEM analysis of 5G5YZ sintered for 12h, a microcrack was observed near grain boundary. The change of the sintering time did not affect the lattice conductivity, but the grain boundary contribution was varied with the sintering time. The grain boundary conductivity of the sample sintered for 1h showed the highest value. Furthermore, the activation energy of the total conductivity was independent upon the sintering time and showed approximately 1.01eV. The highest conductivity measured at $1000^{\circ}C$ was 0.0197S/cm with the sample sintered for 1h. Comparing to 0h’s, the thickness ration of grain boundary as a function of sintering time were 0.88, 1.11 and 1.29 for 1h, 5h and 12h, respectively. In case of the sample sintered for 1h, the thickness of the grain boundary showed the lowest value. The increase of the sintering time over 1h made the decrease of the electric conductivity as well as the increase of the grain growth and the thickness of the grain boundary. As a result, it seemed that the proper sintering time for 5G5YZ composition was 1h.

  • PDF

Effect of Nozzle Material on Drop Size Distribution in Electrohydrodynamic Spraying (전기수력학적 분무에서 노즐재질이 입경분포에 미치는 영향)

  • 김명찬;이상용
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1451-1457
    • /
    • 2002
  • When an aqueous liquid such as water having high electric conductivity and high surface tension is discharged from a nozzle under a strong DC electric field, fine drops ranging from 30 to 450 microns can be obtained only through the spindle mode. In the present study, effects of the electric conductivity and the surface wettability of nozzle materials on formation of drops with this mode were investigated. For that, three nozzles with the same size but with different materials were prepared and tested; a stainless steel needle, and a plain and a metal (gold)-coated (except for the tip portion) silica needles. Uniform drops were obtained with the gold-coated silica nozzle over the wider range of the DC voltage input. That is, formation of the liquid cone and detachment of the liquid spindle (ligament) can be more stabilized and frequent with the needles having high electric conductivity but with low surface wettability at their tips.

Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel (T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화)

  • Han, Su-Dong;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF

Preliminary Study of HTS-FCL Application in Distribution System (초전도 한류기의 배전계통 적용 기본검토)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.421-423
    • /
    • 2003
  • To prevent fault effect in supply of electric power distribution system and plan stable operation of electric power system, must control magnitude of fault current. Although there are various kinds of method to solvethis, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, so that can reflect special quality of actuality supply of electric power distribution system just as it is in this treatise supply of electric power system by two modelling do. Also, by simulation of HTS-FCL action and protection coordination with another equipment appliances, verified the effectiveness in supply of electric power system applying itself super conductivity FCL EMTDC dynamic characteristic model that is develope.

  • PDF