• 제목/요약/키워드: Electric cell

검색결과 1,361건 처리시간 0.029초

인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System)

  • 심귀보;이동욱;선상준
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축 (Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles)

  • 이남수;심성용;안현식;김도현;성영락;오하령
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF

연료전지 차량용 공기 블로워의 공력 설계 (Aerodynamic Design of Cathode Air Blower for Fuel Cell Electric Vehicle)

  • 김우준;박창호;지용준;조경석;김영대;박세영;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.197-200
    • /
    • 2007
  • FCEV uses electric energy generated from fuel cell stack, thus all consisting parts must be re-designed to be suitable for electricity based system. Cathode air blower which supplies compressed air into fuel cell stack has similar shape of turbocharger, but a radial turbine of traditional turbocharger is removed and high speed BLDC motor is installed . Generally, maximum 10% of electric power of fuel cell stack is consumed in air blower, therefore an effective design of air blower can improve the performance of FCEV directly. This study will present an aerodynamic design process of an air blower and compare computational results with experimental data.

  • PDF

경부하 FC 하이브리드 자동차의 구조와 특성에 관한 연구 (A Study on the Structure and Characteristics of Light-duty FC Hybrid Vehicle)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.911-917
    • /
    • 2007
  • Global primary energy demand is projected to increase by 1.7% per year from 2000 to 2030. Almost three-quaters of the increase in demand will come from the transportation sector. Fuel cell hybrid vehicle technology has the potential to significantly reduce energy and harmful emissions, as well as our dependence on foreign oil. In this paper, a systematic and logical methodology is developed and improved mainly to design light duty fuel cell hybrid electric vehicle. We investigated structure and characteristics of light duty FC hybrid vehicle carefully. It can easily be expanded to analyze vehicle-to-grid power connectable plug-in NeHEV. A fuel cell hybrid neighbourhood electric vehicle configuration has been studied in-depth utilizing the proposed methodology.

전기자동차 응용을 위한 DC-DC 컨버터의 설계 및 제어 (Design and control of a DC-DC converter for electric vehicle applications)

  • 강정일;노정욱;이성세;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2002
  • In the fuel-cell electric vehicle system, the low-voltage output of unit fuel-cell demands a number of cells to be stacked In series to produce a DC link voltage which is high enough to drive the vehicle inverter system. However, this increases the complexity of the fuel-cell control system. This paper presents a design of high-efficiency boost converter employing the average current-mode control, which is able to convert a low voltage of a fuel-cell generator with a small number of unit cells to a stable and high DC link voltage for electric vehicle applications.

  • PDF

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계 (Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model)

  • 고정민;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

한 쌍의 전극으로 전기 삼투 유동과 세포 분쇄 기능을 동시에 구현한 연속적인 세포 분쇄기 (A Continuous Electrical Cell Lysis Chip using a DC Bias Voltage for Cell Disruption and Electroosmotic Flow)

  • 이동우;조영호
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.831-835
    • /
    • 2008
  • We present a continuous electrical cell lysis chip, using a DC bias voltage to generate the focused high electric field for cell lysis as well as the electroosmotic flow for cell transport. The previous cell lysis chips apply an AC voltage between micro-gap electrodes for cell lysis and use pumps or valves for cell transport. The present DC chip generates high electrical field by reducing the width of the channel between a DC electrode pair, while the previous AC chips reducing the gap between an AC electrode pair. The present chip performs continuous cell pumping without using additional flow source, while the previous chips need additional pumps or valves for the discontinuous cell loading and unloading in the lysis chambers. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present chip generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of Red Blood Cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of $30{\mu}m/s{\pm}9{\mu}m/s$. In conclusion, the present chip is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip.

금속지지체식 SOFC 제작 및 평가 (Fabrication and Evaluation of Metal-Supported SOFC)

  • 최진혁;이태희;최미화;유영성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2011
  • In this study, a metal-supported SOFC was fabricated using a relatively cheap and simple process. The adhesion process between ceramic cell and metal support was performed in high temperature over $1400^{\circ}C$ and the deformation of large metal-supported cell happened in this process. Using bi-layered metal support fabricated by diffusion bonding, the deformation of the metal-supported cell can be minimized and the sealing efficiency of anode and cathode was improved. The flatness of the cell was improved by over 20% and the maximum power density of over 0.5 $Wcm^{-2}$ was obtained at the operation condition of $800^{\circ}C$.

2분할 2상 쵸퍼에 의한 태양광발전 시스템 (Photovoltaic System using Two-Phase Chopper System with Two Seperate Groups)

  • 김연경;성낙규;이승환;강승욱;김용주;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2175-2177
    • /
    • 1998
  • Sunlight makes it possible to adjust scale of electric power easily as a electric energy without air pollution. Solar cell to convert the sunlight to the electric energy has DC output which is influenced on temperature and irradiation time. Conversion of DC output from the solar cell to AC is necessary due to the fact that most loads to be used currently are compatible with AC generally. In the present work, Two-phase chopper system with two seperate groups to obtain two identical DC is used to preserve the energy from the solar cell in two battery. They are controlled to be operated around maximum output of the solar cell under the condition of constant voltage. Photovoltaic system with DC${\rightarrow}$AC conversion is also investigated for big capacity and two seperated electric power using two separate inverter.

  • PDF