• 제목/요약/키워드: Electric actuator

검색결과 359건 처리시간 0.026초

영구자석형 액추에이터의 동작 특성 (Dynamic Characteristic of Permanent Magnetic Actuator)

  • 서정호;김한균;주수원;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.24-26
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones.

  • PDF

전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어 (A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.

진공 차단기용 다단계 코일 영구 자석형 조작기의 동작 특성 해석 (Dynamic Characteristic Analysis of Permanent Magnetic Actuator with Multi-stage Coils for Vacuum Circuit Breaker)

  • 신동규;강종호;배채윤;박상훈;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.61-63
    • /
    • 2005
  • In this paper, a new type of permanent magnetic actuator (PMA) with multi-stage coils is proposed. Although the conventional type of PMA has many advantages, it cannot be applied in the high voltage circuit breakers due to its short stoke length. The new type of PMA has long stroke length by using multi-stage coils, so it can be applied as an actuator for the high voltage circuit breakers. Dynamic characteristics are calculated by the finite element method (FEM), equation of electric circuit and dynamic equation. The position of plunger and the current of coils in case of the actuator applied in 38kV, 40kA vacuum circuit breaker are presented.

  • PDF

전왜 액츄에이터용 PZMN-BT-PT계 세라믹스에 관한 연구 (The PZMN-BT-PT ceramics for Electrostrictive Actuator)

  • 윤현상;윤광희;박용욱;최형욱;백동수;박창엽
    • 대한전기학회논문지
    • /
    • 제43권4호
    • /
    • pp.620-626
    • /
    • 1994
  • As the electrostrictive actuator for optic control, PZN-BT-PT ceramics were investigated for the influences of sintering conditions on the structural, electrostrictive properties and the optical properties of Fabry-perot Interferometer using eletrostrictive ceramics. The specimen SS15T, sintered 1hr at 1150$^{\circ}C$, is sutible for eletrostrictive actuator because its piezoelectric constants(dS131T) and strain(XS131T) at dc 10kV/cm had the higest value of 175${\times}$10S0-12TC/N, -255${\times}$10S0-6TΔl/l respectively. As the dc electric field increased, the interference effect of Fabry-Perot Interferometer was increased. The most intense interference fringe and the maximum power of 160${\mu}$W were observed at dc 6kV/cm. Thus it was considered that specimen SS15T could be used as the electrostrictive actuator for optic control.

영구자석형 차단기의 특성해석 및 설계 (Analysis of Dynamic characteristic and design of permanent magnetic actuator)

  • 서정호;김한균;주수원;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1040-1042
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones

  • PDF

DEVELOPMENT OF AUTOMATIC CLUTCH ACTUATOR FOR AUTOMATED MANUAL TRANSMISSIONS

  • MOON S. E.;KIM H. S.;HWANG S. H.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.461-466
    • /
    • 2005
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train has gained importance in vehicles. The automatic clutch actuation relieves a driver especially in urban and stop-and-go traffic environments. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of the automatic clutch actuator is designed systematically, which is composed of the electric motor, worm and worm wheel, and crank mechanism. A test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results performed on the test rig.

Dynamic Characteristic Analysis of Electric Actuator for 1 kV/3.2 kA Air Circuit Breaker Based on the Three-link Structure

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Kim, Rae-Eun;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.613-617
    • /
    • 2011
  • In the present paper, a new type of electrical actuator, an electromagnetic force driving actuator (EMFA), applicable to air circuit breaker is developed and analyzed. Transient analysis is performed to obtain the dynamic characteristics of EMFA. The distribution of static magnetic flux is obtained using the finite element method. The coupled problems of electrics and mechanics governing equations are solved using the time-difference method. According to the interception rate of each contactor, investigation of the contactor spring load condition is conducted and applied to the threelink system. Comparisons of the dynamic characteristics of the three-link simulation and experimental data are performed.

3D-EMCN법을 이용한 광 픽업 액츄에이터의 해석 및 최적설계 (Analysis and Optimal Design of Optical Pickup Actuator by 3D-EMCN Method)

  • 김진아;전태경
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권5호
    • /
    • pp.234-241
    • /
    • 2002
  • An optical pickup actuator is an objective-lens-moving mechanism that provides a means to follow the disk displacement accurately(1). In this paper, a slim type optical pickup actuator for Notebook PCs is analyzed and designed to improve the driving sensitivity A three dimensional equivalent magnetic circuit network method (3D-EMCN method) is proposed for an analysis method which provides better characteristics in both precision and computation time of analysis comparing with a commercial three-dimensional finite element (3D-FEM) codes. To verify the validity of proposed method, we made a comparison between the analysis results and the experimental ones. We also compared this analysis results with 3D-FEM results. Among the several optimal algorithm, we adopt a niching genetic algorithm, which renders a set of the multiple optimal solutions. RCS (Restricted Competition Selection) niching genetic algorithm is used for optimal design of the actuator's performance. Recently, the pickup actuator needs additional driving structure for radial and tangential tilting motion to obtain better pick-up performance. So we applied the proposed method to the model containing tilting coils.

정적 하중하의 굽힘 압전 복합재료 작동기의 작동 성능 (Actuating Performance of a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate under Static Loads)

  • 우성충;박기훈;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1231-1236
    • /
    • 2007
  • This study presents the static and dynamic actuating performances of a bending piezoelectric actuator with a thin sandwiched PZT plate under a static load. The stored elastic energy within the actuators which occurs during a curing process is obtained through a flexural bending test. An actuating performance is evaluated in terms of an actuating displacement at the simply supported condition. The results reveal that an actuator that consists of a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at the alternating current voltage, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling their performances.

  • PDF

마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션 (FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator)

  • 이양창;이준성
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.