• 제목/요약/키워드: Electric Wires

검색결과 181건 처리시간 0.024초

카본열선을 사용하는 전기장판의 국부가열에 의한 화재원인 분석 (Fire Cause Analysis of Local Heating on Carbon Type Hot Wire Electric Pad)

  • 송재용;김진표;남정우;사승훈
    • 한국화재소방학회논문지
    • /
    • 제24권4호
    • /
    • pp.104-108
    • /
    • 2010
  • 본 논문은 카본열선을 사용하는 전기장판에서 발생한 전기화재에 관하여 기술하였다. 카본열선을 사용하는 전기장판은 카본 재질의 특성상 전기용접이나 납땜 등의 방법으로 접속이 불가능하며, 열선 끝단을 카본 재질의 연결부를 만들어 접속해야 한다. 이러한 과정에서 열선 사이의 불완전 접속이 발생되며, 불완전 접속부에는 접촉저항의 증가로 국부적인 발열이 발생되고, 최종적으로 화재사고로 진전된다. 본 논문에서는 카본 열선 접속부에서 불완전 접속이 형성되는 경우, 접속부에서 전기적 발열에 의해 발생되는 열선의 손상 형태를 분석하여 화재원인을 규명하였다. 이러한 분석 결과는 카본 열선을 사용하는 전기장판의 화재원인 조사의 기초 자료로 활용 가능할 것으로 기대한다.

전기장판 열선 결함에 의한 전기화재 원인분석 (Fire Cause Analysis on Electric Pad Due to Defect of Hot Wires)

  • 송재용;사승훈;남정우;김진표;조영진;오부열
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.7-12
    • /
    • 2012
  • This paper describes electrical fire on electric pad caused by defect of hot wires. We analyzed two type electric pad using by carbon type hot wire and magnetic shielded type hot wire. First, a carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. An electric pad using by a magnetic shielded type hot wire happened local heating on signal wire for sensing temperature-rise caused by applying current for magnetic shielded. With increasing local heating of signal wire, insulated coating of hot wire was melted. Finally the magnetic shielded type hot wire electric pad lead to electrical fire with breakdown between signal wire and hot wire. In this paper, we analyzed shape of damage in hot wire caused by electrical local heating and investigated fire cause on electric pad due to defect of hot wires.

도시철도차량 전선에 대한 열화진단 방법 고찰 (A Study on Deterioration Diagnostic Method for Electrical Wires of Electric Multiple Units)

  • 홍용기;정종덕;편장식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.680-687
    • /
    • 2009
  • Several kinds of Electrical Wires have been used in Electric Multiple Units(EMU) for the supply of electric power, supervision, and the propagation of control signals. These Electrical Wires must be inspected for safe and stable operation of EMU. The degradation diagnosis to estimate the integrity of Electrical Wires has recently been requested according to the long use of EMU. This paper describes on application of diagnosis method for EMU.

  • PDF

재생 ACSR 전선의 실계통 적용 (Field Application of Recycled Aluminum Wires)

  • 김주용;김상준;송일근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1396-1398
    • /
    • 1997
  • This paper presents experimental results on the recycling aluminum wires used in the actual field. Several testings were carried out with the recycled aluminum wires to prove that they are reusable. Mechanical, electrical and oxidation properties of recycled and new ACSR $160\;mm^2$ were campared after 7.5 year service aging at the salt comtaminated areas of Korean peninsular.

  • PDF

가선재의 피로수명 예측 (Fatigue Life Prediction for Electric Railway Catenary wires)

  • 김용기;장세기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.558-567
    • /
    • 2003
  • The catenary wires are damaged by periodic running of train as well as repeated stress. The wires are also degraded by atmosphere corrosion at fields. Corrosion of wires increased surface roughness and deteriorated mechanical properties by providing fatigue crack initiation sited resulting in a bad effect on service life of the wires. Fatigue test of catenary wires performed to estimate service lifetime. Also, simulation to analyze stress on catenary wires was conducted through modelling the finite elements for dynamic behaviors of wires. Fatigue life of catenary wires was estimated with fatigue and simulation tests.

  • PDF

코어 변화에 대한 자계 특성 (Magnetic Field Properties About Core Change)

  • 김기준
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.159-164
    • /
    • 2012
  • In this paper, it tried to develop the core sensor for detection of micro magnetic field in electric wires. The sensor is non contact type and is consisted of ferrite core for low price. To investigate their properties for variations of current, it changed the number of winding and the length of sample core, it examined, to check the live wire situation in built-in wires, electrical characteristics due to difference between electric wires and core sensor. As the results, it verified live wire situation at the number of winding(5,000) and within length of 6[cm]. Also, it obtained magnetic field magnitude decreased inverse proportion ratio to a square about difference between electric wires and core sensor.

Preventing Method against the Occurrence of a Corona between a Dead End clamp and a Porcelain Insulator Used in 154kV Substation

  • Han, Woon-Ki;Choi, Jong-Soo;Lee, Jun;Kim, Jae-Chul
    • International Journal of Safety
    • /
    • 제6권2호
    • /
    • pp.22-26
    • /
    • 2007
  • An episode of corona is a heterogeneity-caused electric discharge that occurs when electric fields are formed layer on layer and concentrated on an electrode. Electric wires built at the tip of 154kV private facilities use dead end clamp spawns corona from homogeneity caused by field concentration. Corona induces power loss, noise, insulator failure and more. In this research, we've studied the characteristics of coronas that take place in porcelain insulators and terminal electric wires of supporting hard wares (dead end clamp) that are set up as spares in the 154kV private facilities use hydroelectricity installations to support electric wires. Corona, which cannot be identified by regular methods, was measured utilizing UV image camera. As the result of measuring corona via UV image camera, we've confirmed that the depletion of insulators was accelerated following the wire end treatment method and validated the stress intensity of insulators at various lengths of bare wires caused by electric fields via FEMLAB. We have also proposed a new model for relieving homogeneity-caused field concentration, and after analyzing the proposed model via FEMLAB, we've confirmed that the concentration of field distribution was indeed reduced. Such results are exploited in installation of private facilities use equipments, maintenance of insulators and hard wares as well as safety enhancement, and are anticipated to be effectively utilized in corona prevention measures.

부식에 의한 가선재 수명특성에 관한 연구 (The Effect of Corrosion on the Fatigue Life of Catenary Wire)

  • 김용기;장세기;이덕희;정병철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.139.1-146
    • /
    • 2001
  • Contact lines are necessary to supply electric locomotives with electric power. As most railways are gradually electrified with modernized electric cars, the demand for catenary wires and their facilities are also increased. Catenary wires made by metallic materials are generally used in the open air. They are exposed to the marine area with air-borne salt or severely polluted industrial area with much corrosive emission gases depending on the railway locations. In urban area, acid rain may cause a degradation of catenary wire system. Corrosion of catenary wires can make their actual lifetime shorter than that originally designed. Thus, the messenger wires, a kind of catenary wire system, were investigated with respect to corrosion, which include new and the used one collected at the field. They are also vibrated with some amplitude everytime the train passes through the railway. The frequent cyclic load on the wire any result in a fatigue damage, Surface damage by corrosion can make fatigue crack initiate with ease. In the present study, the fatigue life of the used wire was measured 40 to 50% shorter than that of new one in average.

  • PDF

고속카메라를 이용한 전차선 마모 검측 영상처리 알고리즘 개발 (Development of a Technique for Detection of Contact Wire Wear using High-Speed Camera)

  • 박영;조용현;조철진;김원하
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.632-637
    • /
    • 2010
  • The measurement of contact wire wear in electric railways is one of the key test parameters to increase speed and maintain safety in electric railways. Wear caused by continuous interaction between pantographs and contact wires has a negative effect on current collection quality and severely damaged contact wires might cause hazardous accidents. This paper introduces a non-contact optical-based contact wire wear measuring system that will replace conventional wear detecting methods conducted by maintenance vehicles or workers. The system is implemented by high-speed cameras that can collect images of contact wires during vehicle operation, a laser used to create images profile of the contact wire surface, and a computer used to process the collected images. The proposed system is designed to assist maintenance of overhead contact lines by creating geometrically plotted images of contact wires to detect contact wire wear during operation on conventional lines or high-speed lines.

전기적 열선의 발화 및 화재 위험성에 관한 연구 (A Study on Ignition and Fire Risks of Electric Heat Wire)

  • 민세홍;송병준
    • 대한안전경영과학회지
    • /
    • 제17권4호
    • /
    • pp.113-121
    • /
    • 2015
  • This study aims to examine the risk of electrical fire in places where electric heat wires are used. In general, the use of electric heating wires is becoming more common and prevalent in a bid to prevent increasing damage caused by freezing and bursting in residential water pipes, factory pipes and irrigation pipes in vinyl greenhouse and a variety of heat wire products are available in market with legal safety requirements imposed on them. However, the widespread use of anti-freezing burst heat wire products has caused increasing incidents of fire, which often fail to be incorporated into statistics due to quick onsite extinguishing and insignificant damage although damage is gradually on the rise. Against this backdrop, this study aims to look into the possibility of ignition caused by electric heat wires and the mechanism of how it turns into catching fire through overheat and short circuit tests for anti-freezing burst electrical heat wires (hereinafter called the 'heat wire') and expects to serve as the basis for further observations and analyses on the cause of fire and the process of ignition in a scientific manner.