• 제목/요약/키워드: Electric Vertical Take-Off and Landing

검색결과 28건 처리시간 0.016초

전기 수직이착륙 항공모빌리티용 동력플랫폼 개발을 위한 이착륙 실험시스템 연구 (A Study on Take-off and Landing Experimental System for Development of Power Platforms for Electric Vertical Take-Off and Landing Air Mobility)

  • 원준성;노광현
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.639-648
    • /
    • 2023
  • In modern society, UAM (Urban Air Mobility) transportation system is being developed as an alternative to urban traffic congestion and environmental problems, and electric vertical take-off and landing (eVTOL) is a combination of vertical take-off and landing function and electric power. It is attracting attention as an innovative next-generation transportation method as an eco-friendly alternative that reduces noise and air pollution by providing efficient mobility within the city. Since eVTOL development requires designing and implementing airframes suitable for various mission purposes, the power system needs to be developed as a platform concept before airframe development. In this study, we empirically proposed a test bench concept equipped with a stable power supply and an efficient control system, essential in developing a power platform with a combined function in the form of a fuselage and module type specialized for various mission purposes. The proposed drivetrain platform test bench consists of a system verifying the stable take-off and landing software and a power platform adjusting the motor's thrust. It will serve as a verification system that can be developed.

Conceptual design of hybrid electric vertical take-off and landing (eVTOL) aircraft with a liquid hydrogen fuel tank

  • Kim, Jinwook;Kwon, Dohoon;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.27-38
    • /
    • 2022
  • Urban air mobility (UAM) has recently attracted lots of attention as a solution to urban centralization and global warming. Electric vertical take-off and landing (eVTOL) is a concept that emerges as one of the promising and clean technologies for UAM. There are two difficult challenges for eVTOL aircraft to solve. One is how to improve the weight efficiency of aircraft, and the other is how to complete long-range missions for UAM's flight scenarios. To approach these challenges, we propose a consolidated concept design of battery-fuel cell hybrid tiltrotor aircraft with a liquid hydrogen (LH2) fuel tank. The efficiency of a battery-fuel cell hybrid powertrain system on the designed eVTOL aircraft is compared to that of a battery-only powertrain system. This paper shows how much payload can increase and the flight scenario can be improved by hybridizing the battery and fuel cell and presenting a detailed concept of a cryogenic storage tank for LH2.

Advanced Air Mobility ICT 기술 현황 및 발전 방향 (Current Status and Development Direction of Advanced Air Mobility ICTs)

  • 오봉진;이문수;김법균;정양재;임유진;임채덕
    • 전자통신동향분석
    • /
    • 제38권3호
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

전기추진 수직이착륙 항공기 인증제도에 대한 고찰 (A Study on the Certification System for eVTOL Aircraft)

  • 임대진;이관중
    • 항공우주시스템공학회지
    • /
    • 제15권3호
    • /
    • pp.20-29
    • /
    • 2021
  • 항공기 추진시스템 전동화, 분산추진기술, 자율지능기술의 발달로 전기추진 수직이착륙 항공기(eVTOL: Electric Vertical Take-off and Landing)를 활용한 도심항공교통서비스 구현 가능성이 높아짐에 따라 미국, 유럽 등 항공선진국들에서 전기추진 수직이착륙 항공기에 대한 인증제도 연구가 활발히 진행되고 있다. 2019년 유럽항공안전청이 수직이착륙 항공기를 위한 새로운 기술기준 SC-VTOL을 고시하는 등 근시일 내 인증제도 마련이 예상되나 국내 인증제도는 eVTOL 항공기의 개발과 시장 운용에 대비가 미비하다. 본 연구에서는 해외 eVTOL 개발과 인증제도 마련 동향을 조사하고, 미국/유럽의 제도개선 방향을 분석하여 국내에 관련 인증제도 마련을 위한 고려사항을 분석하였다. 이 후 SC-VTOL과 현행 국내 항공기기술기준을 비교분석하고 국내 eVTOL 항공기 형식증명/형식증명승인을 위한 방안을 제시하였다.

eVTOL 항공기 안전성 평가를 위한 가변형 시뮬레이터 구축 (Reconfigurable Simulator for Safety Evaluation of eVTOL Aircraft)

  • 김혜지;김정민;윤다연;하종준;이동진;이장호
    • 한국항행학회논문지
    • /
    • 제28권1호
    • /
    • pp.95-101
    • /
    • 2024
  • 본 논문에서는 다양한 eVTOL (electric vertical take-off and landing) 항공기의 안전성 평가 수행을 위한 가변형 시뮬레이션 환경을 구축하고자 한다. eVTOL 항공기마다 적용되는 Inceptor, 항공기 동역학 모델, 제어기가 상이하므로, 이를 가변형으로 구성하여 eVTOL 항공기마다 안전성 시험 평가 시뮬레이션을 수행할 수 있도록 구성하였다. eVTOL 항공기의 안전성 평가 수행을 위한 시험 항목 및 성능 지표를 설정하였으며, 시험 항목별 시험절차에 따라 안전성 시험 평가 시 필요한 지상보조설비를 구상하여 시뮬레이션 환경에 구현하였다. 또한, 시뮬레이션 내 eVTOL 항공기의 데이터를 활용한 안전성 성능 분석을 위해 MATLAB/Simulink 기반의 시뮬레이션 비행데이터 수집 환경을 구축하고, 안전성 성능 분석을 위한 툴을 구현하였다. 최종적으로 본 논문에서 구현한 가변형 시뮬레이션 환경에서의 안전성 시험 비행 수행 및 성능 분석을 수행하였으며, 정상적으로 수행되는 것을 확인함으로써 시뮬레이션 환경을 검증하였다.

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

eVTOL PAV 유형별 항속거리 및 항속시간 분석 (Flight Range and Time Analysis for Classification of eVTOL PAV)

  • 이봉술;윤주열;황호연
    • 한국항행학회논문지
    • /
    • 제24권2호
    • /
    • pp.73-84
    • /
    • 2020
  • 자동차 대수의 증가로 인한 지상 교통의 혼잡을 극복하기 위해 많은 회사들이 새로운 방식의 운송 수단인 미래형 개인항공기(PAV)를 제안하였다. 미래형 개인항공기 중에서도 전기를 동력으로 사용하고 수직 이착륙이 가능한 전기수직이착륙(eVTOL)항공기가 주목을 받고 있으며 그러한 항공기들의 형상은 멀티콥터형에서 틸트 덕티드팬까지 다양하다. 본 연구에서는 eVTOL 유형별 장단점 등 특성을 분석하였다. 틸트날개형, 복합형, 멀티콥터형의 대표적인 eVTOL PAV인 바하나, 오로라, 볼로콥터에 대해 구성성분 합계 방식을 사용하여 유해항력을 구하였으며, 항공기 설계 및 공력 해석 프로그램인 OpenVSP와 XFLR5 프로그램을 사용하여 표면적과 유도항력을 구하였다. eVTOL PAV에 사용되는 배터리는 테슬라 2170 배터리로 가정하고 항속거리를 계산하였다. 또한 각 eVTOL에 대해 이착륙 및 순항을 포함한 임무형상별로 에너지소모 및 최대 비행시간을 계산하여 비교하였다.

환경요인에 따른 복합형 수직이착륙 무인항공기의 통합 시스템 오차 상관도 분석 (Analysis of the Total System Error Correlation of Hybrid Fixed-Wing UAV (Unmanned Aerial Vehicle) according to Environmental Factor)

  • 엄송근;김정민;오정환;이동진;김도윤;한상혁
    • 한국항공운항학회지
    • /
    • 제31권1호
    • /
    • pp.11-17
    • /
    • 2023
  • In this study, the correlation analysis between total system error and environmental factor variables was performed to confirm the effect on the performance of the integrated navigation system by various environmental factors. To collect flight data of hybrid vertical take-off and landing UAVs, scenarios including various turning sections and straight sections such as left turn, right turn, turning rate, and path change angle were selected, and environmental data of wind direction, wind speed, temperature, air pressure, and humidity were collected in real time through weather station. As a result of the correlation analysis between the collected flight data and environmental data, it was concluded that the performance of the integrated navigation system by environmental factors within the collected data was not significant affected and was robust.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

Tilt-rotor 항공기 동력계통 중량 추정에 대한 상쇄연구 (Trade-off Study of Propulsion Systems Weight Estimation for Tilt-rotor Personal Air Vehicle)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제8권4호
    • /
    • pp.1-6
    • /
    • 2014
  • This paper presents the trade-off study of conducting a survey of the weights for various kind of propulsion systems installed in the Smart Unmanned Aerial Vehicle TR-100, a tilt-rotor vehicle, which is developed by Korea Aerospace Research Institute, in order to predict the appropriate propulsion system for present and future Personal Air Vehicle, which has single mode and vertical take-off & landing. In order to perform the trade-off study, we set the requirements that the vehicle hovers for 1 hour with 1,000 kg maximum take off weights. In this study, the power systems are classified engine, which uses the fossil fuel - turboshaft engine, piston engine, diesel engine and rotary engine, and electric motor with fuelcell or Li-Ion battery. The results of trade-off study shows the power systems using fossil fuel are superior to using fuelcell or Li-Ion battery for weight of propulsion system. Also turboshaft engine is the best power system for the aspects of system weight, and the nexts are rotary engine, piston engine, diesel engine, electric motor with Li-Ion battery, and electric motor with fuelcell.