• Title/Summary/Keyword: Electric Vehicle Charging Stations

Search Result 30, Processing Time 0.022 seconds

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

A Study to Determine the Optimized Location for Fast Electric Vehicle Charging Station Considering Charging Demand in Seoul (서울시 전기차 충전수요를 고려한 급속충전소의 최적입지 선정 연구)

  • Ji gyu Kim;Dong min Lee;Su hwan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.57-69
    • /
    • 2022
  • Even though demand to charge EV(electric vehicles) is increasing, there are some problems to construct EV charging stations and problems from deficient them. Typical problem of EV charging stations is discordance for EV charging station location with its demand. This study investigates methods to determine the optimized location for fast EV charging stations considering charging demand in Seoul. Firstly, variables influencing on determination of determine the optimized location for fast EV charging stations were decided, and then evaluation of weights of the variables and data collection were conducted. Using the weights, location potential scores for each area-cell were calculated and optimized locations for fast EV charging stations were resulted.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation (ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석)

  • Ji Hyun Lee;Seong Jegarl;Yong Chan Jung;Ah-Yun Yoon
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.

Mobile Edge Computing based Charging Infrastructure considering Electric Vehicle Charging Efficiency (전기자동차 충전 효율성을 고려한 모바일 에지 컴퓨팅 기반 충전 인프라 구조)

  • Lee, Juyong;Lee, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.669-674
    • /
    • 2017
  • Due to the depletion of fossil fuels and the increase in environmental pollution, electric vehicles are attracting attention as next-generation transportation and are becoming popular all over the world. As the interest in electric vehicles and the penetration rate increase, studies on the charging infrastructure with vehicle-to-grid (V2G) technology and information technology are actively under way. In particular, communication with the grid network is the most important factor for stable charging and load management of electric vehicles. However, with the existing centralized infrastructure, there are problems when control-message requests increase and the charging infrastructure cannot efficiently operate due to slow response speed. In this paper, we propose a new charging infrastructure using mobile edge computing (MEC) that mitigates congestion and provides low latency by applying distributed cloud computing technology to wireless base stations. Through a performance evaluation, we confirm that the proposed charging infrastructure (with low latency) can cope with peak conditions more efficiently than the existing charging infrastructure.

Analysis of Vulnerable Districts for Electronic Vehicle Charging Infrastructure based on Gas Stations (주유소 기반의 전기자동차 충전인프라 구축에 대한 취약지역 분석)

  • Kim, Taegon;Kim, Solhee;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.137-143
    • /
    • 2014
  • Car exhaust emissions are recognized as one of the key sources for climate change and electric vehicles have no emissions from tailpipe. However, the limited charging infrastructures could restrict the propagation of electric vehicles. The purpose of this study is to find the vulnerable districts limited to the charging station services after meeting the goal of Ministry of Knowledge Economy(12%). We assumed that the charging service can be provided by current gas stations. The range of the vulnerable grades was determined by the accessibility to current gas stations and the vulnerable regions were classified considering the optimal number of charging stations estimated by the efficiency function. We used 4,827 sub-municipal divisions and 11,677 gas station locations for this analysis. The results show that most of mountain areas are vulnerable and the fringe areas of large cities generally get a good grade for the charging infrastructure. The gangwon-do, jeollanam-do, gyeongsangbuk-do, and chungcheongnam-do include more than 40% vulnerable districts.

Power Demand and Total Harmonic Distortion Analysis for an EV Charging Station Concept Utilizing a Battery Energy Storage System

  • Kim, Kisuk;Song, Chong Suk;Byeon, Gilsung;Jung, Hosung;Kim, Hyungchul;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1234-1242
    • /
    • 2013
  • To verify the effectiveness of the proposed system, the charges in power demand are analyzed for an AC and DC distribution system for the existing V2G concept and electric vehicle charging stations connected to a Battery Energy Storage System. In addition, since many power-converter-based chargers are operated simultaneously in an EV charging station, the change in the system harmonics when several EV chargers are connected at a single point is analyzed through simulations.

Analysis of Hydrogen Sales Volume in Changwon (창원 수소충전소의 수소판매량 분석)

  • KANG, BOO MIN;KANG, YOUNG TAEC;LEE, SANG HYUN;KIM, NAM SEOK;YI, KYEONG EUN;PARK, MIN-JU;JEONG, CHANG-HOON;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.356-361
    • /
    • 2019
  • Since the government announced the roadmap to revitalize the hydrogen economy, we are constantly making the effort to expand the use of fuel cell electric vehicles (FCEV) and hydrogen charging stations. There is however a significant issue to build and operate the hydrogen charging station due to the lack of the profit model. Many researchers believe that the supply of FCEV will be increased in the near future and finally ensure the economy of hydrogen charging stations. This study shows that the sales changes of hydrogen gas and consumption patterns by the operation of the hydrogen charging station in Changwon City. The results will be used as the evidence to support for operating the hydrogen charging station by private businesses and the validity of additional establishment of hydrogen charging stations.

An LSTM Neural Network Model for Forecasting Daily Peak Electric Load of EV Charging Stations (EV 충전소의 일별 최대전력부하 예측을 위한 LSTM 신경망 모델)

  • Lee, Haesung;Lee, Byungsung;Ahn, Hyun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.119-127
    • /
    • 2020
  • As the electric vehicle (EV) market in South Korea grows, it is required to expand charging facilities to respond to rapidly increasing EV charging demand. In order to conduct a comprehensive facility planning, it is necessary to forecast future demand for electricity and systematically analyze the impact on the load capacity of facilities based on this. In this paper, we design and develop a Long Short-Term Memory (LSTM) neural network model that predicts the daily peak electric load at each charging station using the EV charging data of KEPCO. First, we obtain refined data through data preprocessing and outlier removal. Next, our model is trained by extracting daily features per charging station and constructing a training set. Finally, our model is verified through performance analysis using a test set for each charging station type, and the limitations of our model are discussed.