• Title/Summary/Keyword: Electric Vehicle Battery Charger

Search Result 61, Processing Time 0.026 seconds

Peak Load Compensation Control Method of 10kW Rapid charger for Electric Vehicle (V2G를 고려한 전기자동차용 충전기의 피크부하보상 제어 기법)

  • Choi, Seong-Chon;Choi, Ga-Gang;Jung, Doo-Young;Lee, Woo-Won;Lee, Su-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.150-151
    • /
    • 2012
  • The utility grid has a supply of electric energy which is larger than the usually required power consumption under peak load condition. So, power distribution is required to have a heavy capacity because of peak-load period. To solve the problem, this paper proposes a 10kW rapid charger system which has a function of load compensation at the peak-load condition. The proposed system supplies power demanded by peak-load through transferring energy in the battery of electric vehicle to the grid. V2G operation is verified through simulation performed by 10kW rapid-charger.

  • PDF

A New DC-DC Converter Topology For High-Efficiency Electric Vehicle Rapid Chargers (전기전동차 급속충전기 고효율화를 위한 새로운 DC-DC 컨버터 토폴로지)

  • Kim, Jin-Hak;Lee, Woo-Seok;Choi, Seung-Won;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • LLC resonant converters or phase-shift full-bridge converters have been widely used as DC - DC converters for rapid charging of electric vehicles (EVs). However, these converters present critical disadvantages, including a large circulating current, which can hinder efficiency and miniaturization in EV battery charger applications. In this paper, a new DC - DC converter topology is proposed for EV rapid chargers. The proposed converter can operate at high frequency despite a high rated power capacity of over 20kW, and the problem of circulating current can be minimized during the entire battery charging time. Owing to these advantages, the proposed converter can achieve a high conversion efficiency of over 97% for EV rapid charger applications. The performance of the proposed converter is verified with 20kW prototypes in this study.

Design of Smart Off-Board Charge System for Neighborhood Electric Vehicle (NEV용 스마트 Off-Board 충전시스템 설계)

  • Park, Sung-Il;Lee, Jeong-Gi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1499-1504
    • /
    • 2013
  • As oil price and demand for environment friendly vehicle rapidly increase, research on electric car is being widely carried out. Especially, NEV(Neighborhood Electric Vehicle) is a pollution-free vehicle that can be mass-produced which the time of development for related technologies is urgently needed. In this paper the On-Board charger for mid- and large- sized secondary cell is applicable in aerospace and other general industries, and the Off-Board standing charger is expected to be employed in creating charging infrastructure.

A Study on Energy Optimization Algorithm of Electric Vehicle Charging System (전기자동차 충전시스템의 에너지 최적화 알고리즘에 관한 연구)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.369-374
    • /
    • 2018
  • In this paper, the energy cost saving in multi-channel electric vehicle charging system. Joint use of the electric car charger battery state of charging proposed a method based charging. A linear programming with two type is used for optimal control, and the time-of-use price is included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed method.

Development and Validation of an Energy Management System for an Electric Vehicle with a split Battery Storage System

  • Becker, Jan;Schaeper, Christoph;Rothgang, Susanne;Sauer, Dirk Uwe
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.920-929
    • /
    • 2013
  • Within the project 'e performance' supported by the German Ministry of Education and Research (BMBF) an electric vehicle, powered by two lithium-ion battery packs of different capacity and voltage has been developed. The required Energy Management System (EMS) in this system controls the current flows of both packs independently by means of two individual dc-dc converters. It acts as an intermediary between energy storage (battery management systems-BMS) and the drivetrain controller on the vehicle control unit (VCU) as well as the on-board charger. This paper describes the most important tasks of the EMS and its interfaces to the BMS and the VCU. To validate the algorithms before integrating them into the vehicle prototype, a detailed Matlab / Simulink-model was created in the project. Test procedures and results from the simulation as well as experiences and comparisons from the real car are presented at the end.

Battery Charger for EV (전기자동차용 배터리 충전기)

  • Yun, Su-Young;Chae, Hyung-Jun;Kim, Won-Yong;Moon, Hyung-Tae;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.460-465
    • /
    • 2010
  • The interest is coming to be high, recently with depletion of the fossil fuel and with carbon dioxide exhaust limit about emittion, from a car of Internal combustion engine to Electric vehicle. AC-DC converter is necessary to battery charging which is an electric vehicle energy storage. Necessary conditions of the converter are necessary for wide output voltage range, high efficiency, high power factor etc. It is composed two stages for wide output voltage range and insulation. Preliminary stage uses LLC resonant converter and the after stage uses BOOST converter PFC circuit for being considered a power factor and confirmed experimentally.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

A Study on Joule Heating Simulation Method to Prevent Sensitivity Current Trip of Electric Vehicle Charger (전기자동차 충전기의 누전차단기 감도 전류 Trip 방지를 위한 Joule Heating 시뮬레이션 방안연구)

  • Lee, Beoung-Kug;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2021
  • This study aimed to prevent inconvenience to electric vehicle users caused by an interruption of charging by the earth leakage breaker trip that occurs during charging. As a field case study, it was confirmed that during the battery charger failure type, leakage current measurement experiment by vehicle type, and leakage current breaker operation experiment, the internal temperature of the charger rose to more than 60 ℃ in summer, and the earth leakage circuit breaker stopped charging by tripping at 80% of the rated sensitivity current. Through Joule heating modeling, 32A is energized at the reference temperature of 30 ℃ at the initial time t=0 (s). After t=3000 (s), the heat generated around the charging part of the earth leakage breaker increased to 32.4 ℃. The temperature and time factors correlated with the amount of heat generated according to the statistical verification tool with a correlation coefficient of 0.97. Overall, it is possible to prevent the leakage breaker sensitivity current trip due to an increase in temperature inside the charger in summer by performing a Joule heating simulation according to the material of the charging case, the arrangement of the internal wiring, and the dielectric medium when developing the charger device.

A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles (새로운 전기 자동차 온보드 충전기용 3-포트 컨버터)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF

Design of the High Efficiency Wireless On-Board Charger for Electric Vehicles (전기자동차용 고효율 무선 온보드 충전기의 설계)

  • Tran, Duc-Hung;Vu, Van-Binh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.27-28
    • /
    • 2015
  • In this paper a high efficiency wireless on-board charger for Electric Vehicle (EV) is proposed and the theoretical analysis based on the two-port network model to come up with suitable design for the battery charge application is presented. The proposed Wireless Power Transfer (WPT) method has adopted four-coil system with air core and its superior performance is proved by comparing it to the conventional two-coil system by the mathematical analysis. In addition, since the proposed WPT converter is able to operate at an almost constant frequency regardless of the load, CC/CV charge of the battery can be simply implemented. A 6.6kW prototype is implemented with 20cm air gap to prove the validity of the proposed method. The experimental results show that the dc to dc conversion efficiency of the proposed system achieves 97.08% at 3.7 kW.

  • PDF