• Title/Summary/Keyword: Electric Stimulator

Search Result 38, Processing Time 0.024 seconds

Analysis of an External Stimulator's Impact on the Heart (체외 전기자극기가 심장에 미치는 영향의 분석 및 평가)

  • Kim, Mun-Soo;Choe, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1213-1217
    • /
    • 2011
  • Electric stimulators are used for various treatments, such as for pain relief and to improve rehabilitation in and out of the hospital. However, if the stimulation pulse affects the patient's heart, it can cause critical cardiac disorders such as arrhythmia or ventricular fibrillation. As a result, it must be ensured that the transmission length of the stimulation pulse does not exceed the proper range in the design of an electric stimulator. Furthermore, every anticipated risk factor must be monitored in in-vitro and in-vivo experiments. A new stimulator was designed to supply continuous 0.001 J stimulation pulses at a rate of 60 pulses per second. To evaluate the safety of the new electric stimulator and to measure its energy transfer and pulse transmission length, we built a conduction model that was filled with saline and measured the electric field at various positions in response to real stimulations. In an animal experiment with two pigs, heart disorders were induced by applying electric stimulation to tissues near the heart. These heart disorders were different from the result obtained with 9 V DC stimulation.

Human Stimulation Threshold of Interferential Current Type Low Frequency Stimulator for Electric Shock Experience Education (전기 감전 체험 교육을 위한 저주파 전류 자극기의 인체 자극 임계값)

  • Jeon, Jeong-Chay;Kim, Jae-Hyun;Yoo, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4768-4772
    • /
    • 2012
  • To prevent electric shock accidents, an experience education is more effective than indoctrination education. But an electric shock experience education system required a proper physical stimulation on human body to experience electric shock. This paper experiment threshold values of a human body by using Interferential Current Type Low Frequency Stimulator in order to apply to an electric shock experience education system. And the proper stimulation values are calculated according to age (divided child and adult) and gender. Results of this study could be applied to an electric shock experience education system.

A Remote Medical Treatment System for Stroke Recovery using ZigBee-Based Wireless Brain Stimulator (ZigBee 기반의 무선 뇌자극기를 이용한 원격 뇌졸중 치료 시스템)

  • Yun, H.J.;Yang, Y.S.;Ryu, M.H.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.657-664
    • /
    • 2007
  • Stroke patients need regular medical treatments and rehabilitation training from their doctors. However, severe aftereffects caused by stroke allow them minimum activities, which make it difficult for them to visit doctor. Recently, electric brain stimulation treatment has been found to be better way compared to conventional ones and many are interested in using this method for the treatment of stroke. In this study, we have developed a remote medical treatment system using wireless electric brain stimulator that can help the stroke patients to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receives personal information of the connected patients and cumulates the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can be applied to the electric stimulation treatments for other brain diseases with a minor change.

A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet (ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발)

  • Kim, G.H.;Ryu, M.H.;Kim, J.J.;Kim, N.G.;Yang, Y.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

PULP RESPONSES TO AN ELECTRIC PULP STIMULATOR IN THE DEVELOPING PERMANENT ANTERIOR DENTITION (영구전치(永久前齒)의 치근발육단계(齒根發育段階)에 따른 Electric Pulp Stimulator에 대(對)한 치수반응(齒髓反應))

  • Choi, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1979
  • The author studied the response to the stimulation of an electric pulp stimulator of healthy 854 permanent anterior teeth in 122 children aged from six to eleven years old, during different stages of tooth development. The results were as followings: 1) In completely open apices, 13.1% (18 teeth) showed positive responses, and 86.9% (120 teeth) showed negative responses. In two-thirds open apices 33.1% (75 teeth) showed positive responses, and 66.9% (152 teeth) showed negative responses. In one-third open apices 57.8% (118 teeth) showed positive responses, and 42.2% (86 teeth) showed negative responses. In closed apices 80.0% (228 teeth) showed positive responses, and 20.0% (57 teeth) showed negative responses. 2) The number of positive responses increased in each upper and lower central incisors during the stages of root development, but not in upper lateral incisors. 3) There were no significant differences statistically in responses between the teeth of the right and left sides and the upper and the lower jaw, in the same stages of root development.

  • PDF

Development and Estimation of a Wireless Controlled Implantable Electric-stimulator for the Blood Pressure Regulation (혈압조절을 위한 모선 제어되는 체내 이식형 전기 자극기의 개발 및 체외 성능 평가)

  • Kim, Yoo-Seok;Park, Seong-Min;Shim, Eun-Bo;Choi, Seong-Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.395-400
    • /
    • 2010
  • Hypertension is the chronic disease that the 16% of total population are suffering, and it needs to be studied to find alternative treatment because of the tolerance and side effect of medications that may bother some patients. in this paper, we verified practicality of implantable electrical stimulator that can readily change stimulus magnitude and frequency. And this device is possible to stimulate baroreflex or parasympathetic nerve. Therefore we performed in vitro tests and animal experiment for device's operating conditions. This device consist of implantable electrical stimulator and extracorporeal control/monitoring system. Stimulator was designed to make 1Hz~100Hz pulses and it can change continuous or periodic pulse train type. And this device can control stimulator's function and monitor stimulator's status and patients' blood pressure at exterior of body using ZigBee module as wireless telecommunication. We verified that stimulator have error rate under 5% at 50mm depth of organs and, stimulator makes high-efficiency energy with closer position of two electrodes. Also we can confirm the performance of device that decreasing blood pressure and heart rate of a rat by electrical stimulation.

Treatment Stimulator's Pulse of Transcranial Magnetic Stimulation (경두개 자기자극장치의 치료자극 펄스)

  • Kim, Whi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.289-296
    • /
    • 2009
  • In this study, I presented power control unit with potential use in the magnetic stimulation of biological systems. The effect of the magnetic stimulation depends on the geometry and orientation of the induced electric field as well as on the current pulse waveform delivered by the stimulator coil. TMS is achieved from the outside of the head using pulses of electromagnetic field that induce an electric field in the brain. There are numerous possibities in the applications TMS, such as diagnosis and therapy through the brain stimulation. These factors are very important to define the equipment requirements and characteristics in that the topology of the power supply and the size and geometry of the coil. The proposed solution is the generation of current pulses with variable amplitude and duration, according to a user defined input. Another solution is the topology that uses elements to store and transfer energy from the power source to the load. In addition to proposed topology, an adequate control strategy and right set of the power circuit parameters made possible to obtain unipolar waves and bipolar waves.

Development of Multi-Array Electrode and Programmable Multi-channel Electrical Stimulator for Firing Trigger Point of Myofascial Pain Syndrome (근막통증증후군의 통증유발점 치료를 위한 멀티어레이 전극과 프로그램 가능한 다채널 전기자극기 개발)

  • Kim, SooHong;Kim, SooSung;Jeon, GyeRok
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.221-227
    • /
    • 2015
  • In this study, Multi-Array Electrodes (MAE) and Programmable Multi-channel Electrical Stimulator (PMES) were implemented for firing Trigger Points (TPs) of the patient with Myofascial Pain Syndrome (MPS). MAE has 25 Ag/AgCl electrodes arranged in the form of array ($5{\times}5$) fabricated with flexible pad, which are applicable to be easy-attached to curved specific region of the human body. PMES consisted of 25 channels. Each channel was to generate various electric stimulus patterns (ESPs) by changing the mono-phasic or bi-phasic of ESP, On/Off duration of ESP, the interval between ESP, and amplitude of ESP. PMES hardware was composed of Host PC, Stimulation Pattern Editing Program (SPEP), and Multi-channel Electrical Stimulator (MES). Experiments were performed using MAE and PMES as the following. First experiment was performed to evaluate the function for each channel of Sub- Micro Controller Unit (SMCU) in MES. Second experiment was conducted on whether ESP applied from each channel of SMCU in PMES was focused to the electrode set to the ground, after applying ESP being output from each channel of SMCU in PMES to MAE.

A Prototype Development of Personal Low-frequency Stimulator with Characteristic Analysis (개인용 저주파 자극기의 특성분석 및 Prototype개발)

  • Lee, Gi-Song;Lee, Dong-Ha;Yu, Jae-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.349-352
    • /
    • 2003
  • A personal low-frequency stimulator is a portable device to relax muscle pains of a person. The stimulator generates combined low-frequency pulses to be applied to pads attached to painful muscles. This paper reports a development of such device with its characteristic analyses. The major components of our stimulator are MCU, high-voltage generating circuit part, high-voltage switching circuit part, input switch part and display unit. High-voltage generating circuit is designed by using a boost converter circuit and allows user control of the output voltage. High-voltage switching circuit, controlled by MCU, generates output voltage to be applied to pads. Input switch part is composed of power supply, intensity selection, mode selection and memory. Display unit adopts a text LCD module to display modes, Intensity, output frequency and user set-up time. Our designed safety circuit, to protect human body from possible electric shock, slowly increases the output voltage to the selected output intensity. It continuously checks the output pulse shape and disable the output when dangerous pulses are detected. This paper also shows some experimental results.

  • PDF