• Title/Summary/Keyword: Electric Room

Search Result 468, Processing Time 0.031 seconds

An Analysis of Various Factors that Determines the Size of Electric Room(22.9Kv class) (전기실의 면적을 결정하는 제 요소의 분석(22.9Kv class))

  • Eo, Ik-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.443-445
    • /
    • 2001
  • As the new large buildings are continuously being built with the advanced technology and skills, an adequate size of electric room needs to be obtained so that engineers establish an efficient and reliable system in the electric room. Considering the current capacity, its expansion and its connecting system, the final size of it should be determined in order to bring an effective use of the building. Usually the extension of electricity capacity is on the increase after construction and it comes from the lack of scientific evaluation on the electric room. Later when the expansion of computer and important electric equipment that needs much capacity is impossible, it will cause a great deal of damage to the renting business of the building as well as becomes the unstable factors of the whole system. Therefore, it is important to have the exact method of calculating the effective size of electric room, the heart of the building, especially when the value of land price is very high. In addition, it should be calculated in an accurate way due to the diversification of the system and the compact size of the electricity equipment. However, the research on this area and the comparison and evaluation of the size after construction have not been made enough and the results of them have not been applied when calculating a new size of electric room. Accordingly, this study examines three methods prescribed in the standards of electricity installation technology through case analysis and suggests substantial data by system, capacity, and purpose.

  • PDF

Thermal Environment Analysis of a Room in Accordance with Ventilation Condition with Multi-Heat Sources (다수의 열원을 가지는 공간에서의 환기 조건에 따른 열환경 해석)

  • Kim, Jae-Jung;Son, Young-Gap;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.199-204
    • /
    • 2000
  • This paper reports a thermal environmental analysis of a room in accommodated with multi-heat sources according to ventilation condition. Two case modification have been investigated to obtain the lower temperature distribution in the room. The temperature distribution of the original room were found about $25{\sim}35^{\circ}C$. As a result, the use of, three ventilating fans and two electric fans are useful for room ventilation respectively, and using two electric fan is more recommendable in side of economical efficiency.

  • PDF

Realization of full magnetoelectric control at room temperature

  • Chun, Sae-Hwan;Chai, Yi-Sheng;Oh, Yoon-Seok;Kim, In-Gyu;Jeon, Byung-Gu;Kim, Han-Bit;Jeon, Byeong-Jo;Haam, S.Y.;Chung, Jae-Ho;Park, Jae-Hoon;Kim, Kee-Hoon
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.101-101
    • /
    • 2011
  • The control of magnetization by an electric field at room temperature remains as one of great challenges in materials science. Multiferroics, in which magnetism and ferroelectricity coexist and couple to each other, could be the most plausible candidate to realize this long-sought capability. While recent intensive research on the multiferroics has made significant progress in sensitive, magnetic control of electric polarization, the electrical control of magnetization, the converse effect, has been observed only in a limited range far below room temperature. Here we demonstrate at room temperature the control of both electric polarization by a magnetic field and magnetization by an electric field in a multiferroic hexaferrite. The electric polarization rapidly increases in a magnetic field as low as 5 mT and the magnetoelectric susceptibility reaches up to 3200 ps/m, the highest value in single phase materials. The magnetization is also modulated up to 0.34 mB per formula unit in an electric field of 1.14 MV/m. Furthermore, this compound allows nonvolatile, magnetoelectric reading- and writing-operations entirely at room temperature. Four different magnetic/electric field writing conditions generate repeatable, distinct M versus E curves without dissipation, offering an unprecedented opportunity for a multi-bit memory or a spintronic device applications.

  • PDF

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Optimization of refrigerator machine room for energy saving (냉장고 기계실 유로 최적화를 통한 소비 전력 저감)

  • 김영국;한병윤;김재열;김태훈;이연원;김남식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.101-106
    • /
    • 2002
  • In the Refrigeration and air conditioning industrial circles, refrigerator is demands a high degree of efficiency due to the Environmental Preservation Law. Many researchers are working on factors to improve the efficiency of the refrigerator In this paper, a study of the factors on the decrease of electric power consumption, several experiments are performed to improve the fluid flow in the refrigerator machine room. As a results, average temperatures of compressor and condenser are reduced 3.1$^{\circ}C$, 2.$0^{\circ}C$. The consuming electric power rate is reduced 0.7kWh/month.

  • PDF

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation (내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

Optimum Control of a Photoelectric Dimming System in a Small Office with a Double Skin Envelope

  • Kim, Soo Young;Yum, Sung Kon
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2005
  • A photoelectric dimming control system for a small private office space with a double skin envelope system was analyzed for the purpose of examining optimum control performances under a variety of daylight conditions. Computer simulations were performed for the three different photosensor types positioned at the center of ceiling in the space. They were applied in both a south and north-facing room. Daylight conditions were a fixed horizontal venetian blind on an external envelope and a retractable shading device on an internal envelope under a clear, intermediate and overcast sky at different times of a day and year. Partially-shielded photosensors provided good control performances providing the required electric light output under clear and intermediate sky conditions. Unshielded photosensors failed to provide necessary illuminance levels producing less electric output and fully-shielded photosensors generally provided excessive light output. Reasonable electric lighting energy savings were achieved except under overcast sky conditions where the control system did not contribute to energy savings due to the less daylight through envelopes. The retractable shading device covering 50% of the internal envelope reduced energy savings up to 19.62%, but the workplane illuminance levels were maintained within recommended ranges. The coefficients of determination between workplane illuminance and photosensor illuminance due to daylight ranged from 0.74 to 0.98. Partially-shielded conditions provided best correlations and the north-facing room yielded stronger correlation than the south-facing room.

Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature (상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성)

  • Lee, Joong-Kee;Jeon, Bup-Ju;Hyun, Jin;Byun, Dong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.