• Title/Summary/Keyword: Electric Outlet

Search Result 122, Processing Time 0.025 seconds

A Study on the Development and Estimation of Waterproof Outlet for Low Voltage (저압용 방수 콘센트의 개발 및 평가에 관한 연구)

  • Choi, Chung-Seog;Kim, Chang-Soung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.181-185
    • /
    • 2008
  • In this paper, we investigates accident actual conditions of electric outlet for low voltage that is used into interior and clear hazardous factor. Electric outlet for general can know that melting of socket-outlet and carbonization of support occur if a contaminant becomes burnout because is flowed in. Existent outlet consists of structure that special quality is good but inflow of a contaminant is easy when is dry. But, waterproof outlet passes silicon layer and have connected structure plug. As developed outlet covers whole surface and back side, interval was shut. Safety pin of developed outlet was established to operate to vertical direction. Therefore, we estimate that contribute on prevention of electrical disaster if use developed outlet to a restaurant, a laundry, a laboratory etc.

Development of Waterproof Electric Outlet using Silicon Packing Technology (실리콘 패킹 기술을 이용한 방수 콘센트의 개발)

  • Choi, Chung-Seog;Kim, Chang-Soung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.85-87
    • /
    • 2008
  • In this paper, we manufactured waterproof outlet that use silicon packing know-how. Developed outlet is waterproof packing on pins of the plug insertion hole and electric wire insertion hole. Therefore, outlet body internal furnace water can prevent that is flowed in. Temperature anomaly can use in back large outer wall, restaurant exposed easily to moisture, bathroom, laundry, a laboratory and science room, auditorium, etc. That is estimate that contribute on courtesy call of electricity calamity.

  • PDF

Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads (전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

The smart EV charging system based on the big data analysis of the power consumption patterns

  • Kang, Hun-Cheol;Kang, Ki-Beom;Ahn, Hyun-kwon;Lee, Seong-Hyun;Ahn, Tae-Hyo;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • The high costs of electric vehicle supply equipment (EVSE) and installation are currently a stumbling block to the proliferation of electric vehicles (EVs). The cost-effective solutions are needed to support the expansion of charging infrastructure. In this paper, we develope EV charging system based on the big data analysis of the power consumption patterns. The developed EV charging system is consisted of the smart EV outlet, gateways, powergates, the big data management system, and mobile applications. The smart EV outlet is designed to low costs of equipment and installation by replacing the existing 220V outlet. We can connect the smart EV outlet to household appliances. Z-wave technology is used in the smart EV outlet to provide the EV power usage to users using Apps. The smart EV outlet provides 220V EV charging and therefore, we can restore vehicle driving range during overnight and work hours.

Development and Safety Estimation of Resistive Leakage Current(Igr) of Detection Outlet (저항성 누설전류(Igr) 검출 콘센트의 개발 및 안전성 평가)

  • Kim, Chang-Soung;Hanh, Song-Yop;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.221-226
    • /
    • 2009
  • In this paper, we analyzed form of flowing leakage current in electrical installation. Leakage current ($I_g$) is consisted of resistive leakage current($I_{gr}$), capacitive leakage current($I_{gc}$), and inductive leakage current($I_{gl}$). Resistive leakage current($I_{gr}$) is big occasion than capacitive leakage current($I_{gc}$) in system, Residual Current Protective Device(RCD) detects correctly leakage current. But,$I_{gc}$ is big occasion than $I_{gr}$, RCD is malfunctioned It is resistance to lead to electric fire in electrical device. We manufactured outlet that resistive leakage current detecting circuit is had. Manufactured outlet displayed performance exactly in leakage current of 5 mA Therefore, this product estimates that contribute on electric fire courtesy call.

A Flow Visualization of ER Fluids in 3Port Rectangular Tube (3 포트 사각 튜브내에서 ER유체의 유동 가시화)

  • Jang Sung-Cheol;Yum Man-Oh;Jang Mun-Jey
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.30-37
    • /
    • 2006
  • The purpose of this study is to visualize the characteristics of ER fluids as preceding step of developing 3 port ER valves. ER fluids are made with silicone oil and 3 weight fraction starch having hydrous particles. The flow visualization of ER fluids flow is obtained by CCD camera with changing the strength of electric field to ER fluids flow. As the strength of the electric field increases, more clusters in flow are made and these clusters are though to be the reasons of the load flow rate being increased and the outlet flow rate being decreased. The ER Valves and load and outlet flow rate check method are considered to be applied to the fluid power control system.

Study on the Internal Flow of an Electric Oven with Variation of Steam Outlet Position (전기오븐의 스팀 출구위치에 따른 내부유동에 대한 연구)

  • Park, Young Hun;Kim, Yu Jin;Jung, Young Man;Park, Warn-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.450-456
    • /
    • 2013
  • The composite electric oven is one of the fixing utensil, various functions are required. Steam generating function, which is one of its functions, and allows various food cooking. The location of the outlet of the steam generator is designed around ease of installation, consideration of internal fluid is not. Distribution of the steam can not be non-uniformly. Accordingly, cooking time becomes longer, the energy consumption increases. As a result of the analysis, it was confirmed stagnation phenomenon of the internal flow through the interpretation of the calculations for the position of the outlet of the steam generator existing. Further, by computing the analysis of various locations of the outlet of the steam generator, we investigated the distribution and characteristics of the internal flow.

Analysis of Electrical Accident for Outlet Circuit of Laboratory on ETA (ETA를 통한 연구실험실 콘센트회로의 전기재해 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Park, Jong-Young;Kim, Sang-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • This study is intended to identify issues on the basis of investigating the actual state of laboratory environment and outlet circuit, and derive end states by expressing sequences from the initiating event of disaster to accident in leakage current, poor contact and overload through ETA(event tree analysis). To this end, this study investigated the actual state of electric equipment of laboratory at universities in all parts of country. And it is shown that most of them are failure in electric work and user negligence in the investigation of actual state. It is found that there is earth fault and defect in wire diameter in the failure of electric work and the problem of partial disconnection due to wire bundling and poor contact in user negligence. Outlet-related component, failure rate and initiating events are composed of a total of 41 initiating events, i.e., 30 internal initiating events and 11 external initiating events. And end states are composed of a total of 15 parts, i.e., 3 electric power parts and 12 safety parts. Earthing class 3 is the most important safety device against leakage current (initiating event). And in case of poor contact, it is necessary for manager to check thoroughly because there is no safety device. In case of overload/overcurrent, when high-capacity equipment is connected, a molded case circuit breaker, safety device, worked. However, in most cases, it is verified that this doesn't work. This study can be utilized as electric equipment safety guide for laboratory safety manager and managers.

Characteristics of Pre-Post Contacts of DC Consent-Plug (직류용 콘센트-플러그의 초기-후기접점 특성)

  • Na, Jaeho;Wang, Yongpeel;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.290-295
    • /
    • 2016
  • Socket-outlets and plugs are essential devices that supply electric power into user appliances. During plug-out operation of an engaged plug from the socket-outlet, the consistent arc between the plug and the socket-outlet could develop into heavy fires in DC systems but only a small spark in AC systems. This paper proposes a pre-/post-electrode method to prevent plugs and socket-outlets from melting by sustaining arc energy. To implement the proposed pre-/post-electrodes, an experimental plug is manufactured with two electrodes, in which a post resistance Rs is connected in between. This paper investigates the function of the post resistance Rs, in which the best value of the post resistance Rs is obtained through simulation and experiment.

A FUZZY PID Control of Supply Duct Outlet Air Temperature for PEM (FUZZY PID 방법을 이용한 개별 공조시스템의 급기온도 제어)

  • 장영준;박영철;정광섭;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2002
  • The work presented here provides a control of the supply duct outlet air temperature in PEM (personal environment module) using fuzzy PID controller. In previous work, PID control systems were used, but the result shows that the outlet air temperature and electric heater regulating voltage were oscillated. Fuzzy PID control systems are designed to improve the system response obtained using PID control and implemented experimentally Also, PID controller and fuzzy controller without PID logic are provided to compare the result with that of the fuzzy PID controller. Data obtained shows that the fuzzy PID control system satisfies the design criteria and works proper1y in controlling the supply air temperature. Also it has bettor performance than the previous result obtained using PID control.