• Title/Summary/Keyword: Electric Motors

Search Result 568, Processing Time 0.034 seconds

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

Development and Design of 35KW Low-Noise IPM Motor for Micro Electric Vehicles

  • Hyeong-Sam Park;Duk-Keun An;Dong-Cheol Kim;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.337-342
    • /
    • 2023
  • Since the electric vehicle uses an electric motor, problems have arisen as the driver hears the inherent noise of the motor or external noise, which was not a problem in the past, due to the overall lower noise environment than when using an internal combustion engine. Therefore, the purpose of this paper is to reduce the noise and vibration of electric motors for electric vehicles, and recently, to increase the speed of high-power, high-efficiency electric motors in a small size, and to develop low-noise motors, IPM motors are applied to produce 35KW electric motors for electric vehicles. A motor for low noise was designed and implemented. N-T Curve and efficiency map were confirmed as the final result of developing a 35KW low-noise motor for electric vehicles by applying the IPM motor applied in this paper. Based on 3500 rpm, Max Torque [Nm]: 121.15, Max Power [KW]: 44.04, and Max Efficiency [%]: 97.65, showing high efficiency.

Efficiency Calculation of Operating Induction Motors in Plant (플랜트에서 운전 중인 유도전동기의 효율 계산)

  • Park, Hyung-Joon;Chung, Chan-Soo;Lee, Hae-Soo;Lee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2046-2047
    • /
    • 2007
  • This paper is about the energy efficiency calculation of operating electric motors in production facilities. The most important 1st step to efficient operation of plants is the evaluation of the energy efficiency of the production facilities in that plant. Through this procedure, we can decide that which facilities i.e. induction motors, in this paper, should do maintenance or not. There are mainly 2 types of energy which are used in production facilities, the one is electric energy and the other is heat energy but in order to make calculation simple, in this paper, we are only focusing on electric energy, efficiency and energy loss of the electric motors under operation conditions. As a case study, we chose electric motors in a certain process in a production facilities, and calculated efficiency and loss by using measured data.

  • PDF

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.

Development of Switched Reluctance Motor Drive for Electric Power Steering System (전동식 조향장치용 스위치드 릴럭턴스 모터 드라이브 개발)

  • Jeong, Min-Chang;Joo, Min-Gi;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1511-1518
    • /
    • 2014
  • Demand for high fuel efficiency and smart features of the vehicles, research has been intensified. Hence, research and development on electric power steering (EPS) system to replace the existing hydraulic steering system has been actively conducted. Permanent magnet motors are widely used in automotive applications due to their high power density and high efficiency. However, increasing price and limited production of rare-earth permanent magnets has recently prompted the auto parts makers to substitute permanent magnet motors by non- or less rare earth magnet motors. Switched reluctance motors SRMs), known as typical non-rare earth motors have simple structure, low manufacturing cost, and high reliability. This paper discusses design, modeling, simulation, and experimental verification of a prototype SRM drive for electric power steering system.

Some Way for Three-phase Induction Motors Electromagnetic Noise Reduction

  • Sarbu, Mircea A.
    • Journal of KSNVE
    • /
    • v.13 no.2
    • /
    • pp.119-128
    • /
    • 2003
  • Abstract Increasing awareness of industrial noise pollution and emerging stricter standards have made noise an important topic of research in electric motors. The standard three-phase induction motors. see Fig. 1, (abbreviated further as TPIM) are mass-produced as being simple, robust and rather inexpensive, as opposed to other types of electric motors. Electric motors use over half of all electricity consumed in most countries. Typically motors consume 60∼80 % of the electricity for those used In the industrial sector and about 20∼35 % of the electricity for those used in the commercial sector. For that is important to know their participation to the noise pollution of the environment and the efficient ways of their noise reduction. Each step in determining the ways for TPIM electromagnetic noise reduction including the methods that highlight their efficiency, are presented and explained.

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

Development of a Real-time Fault Diagnosis System for Electric Motors using radiated sound signals (방사음을 이용한 모터 결함 판정용 실시간 전문가 시스템 개발)

  • 경용수;김상명;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.603-608
    • /
    • 2001
  • In order to distinguish fault electric motors automatically in real time. an intelligent diagnosis technique may be required. This paper presents an automatic fault detection system for electric motors by using their acoustic noises. Time signals of each candidate motor were measured in an anechoic chamber for further analysis. Spectral analysis was first carried out and they showed that two typical types of fault motors could be successfully distinguished in the frequency domain; bearing faults and scratches. Unlike the trend of normal motors that shows only a single dominant peak at around 2000 ㎐, several peaks are bunched together in bearing fault motors. On the other hand, large frequency noises at around 6500 ㎐ are newly arisen in scratchy fault motors. However, the processing time for spectral analysis was rather long for a real time application in production lines. Thus, a number of band-pass filters were used in the time domain instead for a real time application. Before applying filters, the bands of filters were set from the information of spectral analysis. By applying a set of band-pass filters, the RMS values of each filtered signal were calculated, and thus the normal and damaged motors could be successfully distinguished.

  • PDF

Estimation of Dielectric Strength in High Voltage Motor Stator Windings for Circulating Water Pump (순환수 펌프용 고압전동기 고정자 권선의 절연내력 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik;Park, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1191-1192
    • /
    • 2015
  • To assess the deterioration condition of stator insulation, diagnostic and overpotential tests were performed on two high voltage(HV) motors for circulating water pump (CWP). Following the long term rewinding program, the diagnostic test was performed on two motors during the planning maintenance period. After completing the diagnostic test, overpotential test was done on the stator windings of HV motors. During the overpotential test, the No. 1 and No. 2 of HV motors failed at 8.8 kV and 7.9 kV, respectively. Stator windings of two HV motors had deteriorated significantly.

  • PDF

Development of Battery Management System for Electric Vehicle (전기자동차용 전지관리 시스템의 개발)

  • Kim, C.G.;Sung, K.T.;Kim, S.H.;Koo, J.S.;Park, S.S.;Youn, K.Y.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1223-1225
    • /
    • 2002
  • This paper has described in Electric Vehicle Battery Management System(EV BMS). EV BMS manages the input/output energy of the traction battery, and provides the optimum environment condition during charging/ driving through the communication with other controllers. In this paper, we introduce our BMS for Santa Fe EV. Hyundai Motor Company has been developed EV since 1990. Recently, Santa Fe EV has been demonstrating with the environmental friendly technology. Two year real road testing program with electric powered Santa Fe is being undertaken by HMC in Hawaii.

  • PDF