• Title/Summary/Keyword: Electric Magnetic Interference

Search Result 55, Processing Time 0.023 seconds

Limits of Fully Anechoic Room for Radiated Disturbance Using Correlation Factor (야외시험장과 전자파 완전 무반사실과의 상관계수를 이용한 완전 무반사실의 허용 기준 제안)

  • Lee, Soon-Yong;Chung, Yeon-Choon;Choi, Jea-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1401-1411
    • /
    • 2010
  • In this paper, we suggested the tolerance limits of FAR(Fully Anechoic Room) using correlation factor between OATS(Open area Test Site) to measure EMI(Electromagnetic Interference) and FAR to measure EMS(Electromagnetic Susceptibility). FAR Project(SMT4-CT96-2133), CISPR/A/665/DTR, and CISPR A/665/DTR documents are analyzed and theoretical correlation factor based on the documents and theoretical equations is drawn. To obtain the experimental correlation factor, EUT(Equipment Under Test) is fabricated as well as measured at the 10 m distance OATS and in the 3 m distance FAR. Also, to suggest the tolerance limits of EUT with multi sources, radiation theory for electric and magnetic dipoles is programmed. We drew the correlation factor for EUT with multi sources through the programs. As the tolerance limits of FAR is newly defined, It can be used alternative test site for OATS to measure EMI, efficiently.

Development of Board for EMI on Dash Camera with 360° Omnidirectional Angle (360° 전방위 화각을 가진 Dash Camera의 EMI 대응을 위한 Board 개발)

  • Lee, Hee-Yeol;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.248-251
    • /
    • 2017
  • In this paper, The proposed board is developed by EMI compliant Dash Camera with $360^{\circ}$ omni angle. The proposed board is designed by designing DM and CM input noise reduction circuit and applying active EMI filter coupling circuit. The DM and CM input noise reduction circuit design uses a differential op amp circuit to obtain the DM noise coupled to the input signal via the parasitic capacitance(CP). In order to simplify the circuit by applying the active EMI filter coupling circuit, a noise separator is installed to compensate the noise of the EMI source to compensate the CM and DM active filter simultaneously. In order to evaluate the performance of the board for the proposed EMI response, an authorized accreditation body has confirmed that the electromagnetic certification standard for each frequency band is satisfied.

A Classification of lschemic Heart Disease using Neural Network in Magnetocardiogram (심자도에서 신경회로망을 이용한 허혈성 심장질환 분류)

  • Eum, Sang-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2137-2142
    • /
    • 2016
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. In this study, the signals obtained magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUID) system, and the clinical significance of various feature parameters has been developed MCG. Neural network algorithm was used to perform the classification of ischemic heart disease. The MCG signal was obtained to facilitate the extraction of parameters through a process of pre-processing. The data used to research the normal group 10 and ischemic heart disease group 10 with visible signs of stable angina patients. The available clinical indicators were extracted by characteristic point, characteristic interval parameter, and amplitude ratio parameter. The extracted parameters are determined to analysis the significance and clinical parameters were defined. It is possible to classify ischemic heart disease using the MCG feature parameters as a neural network input.

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).