• 제목/요약/키워드: Electric Field strength

검색결과 468건 처리시간 0.033초

Creating and Transforming a Second-Rank Antisymmetric Field-Strength Tensor Fαβ in Minkowski Space using MATHEMATICA

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.131-142
    • /
    • 2020
  • As the laws of physics are expressed in a manner that makes their invariance under coordinate transformations manifest, they should be written in terms of tensors. Furthermore, tensors make manifest the characteristics and behaviors of electromagnetic fields through inhomogeneous, anisotropic, and compressible media. Electromagnetic fields are expressed completely in tensor form, Fαβ, which implies both electric field ${\overrightarrow{E}}$ and magnetic field ${\overrightarrow{B}}$ rather than separately in the vector fields. This study presents the Mathematica platform that generates and transforms a second-rank antisymmetric field-strength tensor Fαβ and whiskbroom pattern in Minkowski space. The platforms enhance the capabilities of students and researchers in tensor analysis and improves comprehension of the elegant features of complete structure in physics.

고압중전기기용 절연신소재 EMNC와 EMNSC의 특성연구 (Properties of EMNC and EMNSC for Insulation New Material as Apply to High Voltage Heavy Electric Machine)

  • 박재준
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1454-1460
    • /
    • 2012
  • In order to develop an new electric insulation material for heavy electric equipments, epoxy/micro/nano composite (EMNC) was prepared by mixing micro-silica with nano layered silicate, where the nano layered silicate was synthesized by our electric field dispersion method, EMNSC was prepared by treating the EMNC with a silane coupling agent. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanicla properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. All properties of EMNSC were modified by treating EMNC with silane coupling agent and it was confirmed that our new developed composites could be used in the heavy electric equipments.

특별고압 전선로에 대한 인체접근한계의 이론적연구 (A Study on the Theoretical Analysis of Human Body Approximation to Special High Voltage Eletric Lines)

  • 김상렬;김찬오;이재인
    • 한국안전학회지
    • /
    • 제5권3호
    • /
    • pp.44-50
    • /
    • 1990
  • This study is conducted to examine the theoretical background of characteristics for electric shock encountered in special high-voltage electric lines among the accidents of electric shock, and to calculate applied current to human body and field strength over the head by means of numerical anaysis through FEM(Finite Element Method), and to make clear the hazard level to the human body, and to establish the approach limit distance of human body to the electric lines, which could be applied to the safety standard while working in the vicinity of special high-voltage electric lines.

  • PDF

정상압력 유동 하에서 전기유변유체의 동적 응답 (Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow)

  • 남윤주;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

고밀도 폴리에틸렌의 전계 세기의 영향 (Pigment Influence of High Density Polyethylene Electrical Strength)

  • 최용성;위성동;황종선;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집 센서 박막재료연구회 및 광주 전남지부
    • /
    • pp.50-53
    • /
    • 2008
  • In this work, the $TiO_2$ pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties. Formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The $\beta$ parameter could be using to insulator particles dispersion. The $TiO_2$ concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the $\beta$ parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% $TiO_2$ weight.

  • PDF

고밀도 폴리에틸렌에 있어서 전계의 세기의 영향 (Pigment Influence in High Density Polyethylene Electrical Strength)

  • 윤주호;최용성;문종대;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.331-332
    • /
    • 2007
  • In this work, the TiO2 pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties, formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The parameter could be using to insulator panicles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

절연설계(絶緣設計)를 지원(支援)하는 Personal CAE 시스템의 구축(構築) (Construction of Personal Computer CAE System Support to Insulation Design)

  • 최영찬;대도호사;대산룡일낭;김고희대치
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.922-924
    • /
    • 1992
  • This paper presents a CAE(Computer Aided Engineering)system for solving electrostatic field problems by means of a small size computer such as a personal computer. The system software operated on the personal computer is composed of a CAD(Computer aided Design), electric field analysis by using FEM(Finite Element Method)and DB(Data Base)of insulating materials. In addition, we discuss an application of the system to analyzing electric field such as parallel plate electrodes with an insulation spacer, which result suggests that the visualization of electric field distribution and tolerance for insulation strength enables us to assure a simplified evaluation of the insulating design.

  • PDF

고전압 전력기기 개발을 위한 기중 절연파괴특성 분석에 관한 연구 (A Study on the Lightning Impulse Dielectric Characteristics of Air for the Development of Air-Insulated High Voltage Apparatuses)

  • 남석호;강형구
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1005-1010
    • /
    • 2011
  • The accidents caused by dielectric instability have been increasing in power grid. It is important to enhance the dielectric reliability of a high voltage apparatus to reduce the damage from electrical hazards. To develop an electrically reliable high voltage apparatus, the experimental study on the electrical breakdown field strength is indispensable, as well as theoretical approach. In this paper, the lightning impulse breakdown characteristics considering utilization factors are studied for the establishment of insulation design criteria of an high voltage apparatus. The utilization factors are represented as the ratio of mean electric field to maximum electric field. Dielectric experiments are performed by using several kinds of sphere-plane electrode systems made of stainless steel. As a result, it is found that dielectric characteristics are affected by not only maximum electric field intensity but also utilization factors of electrode systems. The results are expected to be applicable to designing the air-insulated high voltage apparatuses.