• Title/Summary/Keyword: Electric Field Uniformity

Search Result 65, Processing Time 0.032 seconds

Electrical and Electromagnetic Characteristics of Xe Plasma Flat Lamp by Electrode Structure (Xe 플라즈마 평판형 광원의 전극 구조에 따른 전기.자기적 특성)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.82-85
    • /
    • 2006
  • As a display becomes large recently, Acquisition of high luminance and Luminance uniformity is becoming difficult in the existing CCFL or EEFL backlight system. So, study for a performance enhancement has enforced. but lamp development of flat type is asked for high luminance and a luminance uniformity security in of LCD and area anger trend ultimately. In this paper, we changed a tip shape of an electrode for production by the most suitable LCD backlight surface light source, and confirmed discharge characteristic along discharge gas pressure and voltage, and confirmed electric field distribution and discharge energy characteristic through a Maxwell 2D simulation. Therefore the discharge firing voltage characteristic showed a low characteristic than a rectangular type and round type in case of electrode which used tip of a triangle type, and displayed a discharge electric current as a same voltage was low.

  • PDF

Fabrication of Electrospun Titania Nanofiber (전기방사법을 이용한 산화티탄 나노섬유의 제조)

  • Park, Sooil;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong;Kim, Bae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.548-553
    • /
    • 2005
  • $TiO_2$ nanofibers were fabricated by annealing electrospun $TiO_2$/PVP nanofibers for 3 h at $500^{\circ}C$ in air. Size and uniformity of electrospun $TiO_2$ nanofiber diameters were evaluated via XRD and SEM by varying electric field, PVP concentration, Ti tetraisopropoxide concentration and precursor flow rate. Experimental results revealed that the effect of PVP concentration on size and uniformity of electrospun $TiO_2$ nanofiber diameters was most profound, however, the other effects were relatively small. Uniform fibers with no beads were observed for the electrospun anatase titania nanofibers with a diameter of 170 nm.

Study of ALD Process using the Line Type Plasma Source (라인형 플라즈마 소스를 이용한 ALD 공정 연구)

  • Kwon, Gi Chung;Jo, Tae Hoon;Choi, Jin Woo;Song, Sae Yung;Seol, Jae Yoon;Lee, Jun Sin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.33-35
    • /
    • 2016
  • In this study, a new plasma source was used in the ALD process. Line type plasma sources were analyzed by electric and magnetic field simulation. And the results were compared with plasma density and electron temperature measurement results. As a result, the results of the computer simulation and the diagnosis results of plasma density and electron temperature showed similar tendency. At this time, the plasma uniformity is 95.6 %. $Al_2O_3$ thin film was coated on 6 inch Si-wafer, using this plasma source. The uniformity of the thin film was more than 98% and the thin film growth rate was 0.13 nm/cycle.

Development of an advanced atmospheric pressure plasma source with high spatial uniformity and selectiveness for surface treatment

  • Im, Yu-Bong;Choe, Won-Ho;Lee, Seung-Hun;Han, U-Yong;Lee, Jong-Hyeon;Lee, Sang-Gyun;Ha, Jeong-Min;Kim, Jong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.176-177
    • /
    • 2016
  • In the last few decades, attention toward atmospheric pressure plasma (APP) has been greatly increased due to the numerous advantages of those applications, such as non-necessity of high vacuum facility, easy setup and operation, and low temperature operation. The practical applications of APP can be found in a wide spectrum of fields from the functionalization of material surfaces to sterilization of medical devices. In the secondary battery industry, separator film has been typically treated by APP to enhance adhesion strength between adjacent films. In this process, the plasma is required to have high stability and uniformity for better performance of the battery. Dielectric barrier discharge (DBD) was usually adopted to limit overcurrent in the plasma, and we developed the pre-discharge technology to overcome the drawbacks of streamer discharge in the conventional DBD source which makes it possible to produce a super-stable plasma at atmospheric pressure. Simulations for the fluid flow and electric field were parametrically performed to find the optimized design for the linear jet plasma source. The developed plasma source (Plasmapp LJPS-200) exhibits spatial non-uniformity of less than 3%, and the adhesion strength between the separator and electrode films was observed to increase 17% by the plasma treatment.

  • PDF

In-situ TEM of Carbon Nanotube Field Emitters and Improvement of Electron Emission from Nanotube Films by Laser Treatment

  • Saito, Yahachi;Seko, Kazuyuki;Kinoshita, Jun-ichi;Ishida, Toshiyuki;Yotani, Junko;Kurachi, Hiroyuki;Uemura, Sashiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1081-1086
    • /
    • 2005
  • Dynamic behavior of carbon nanotubes (CNTs) in an electric field is directly observed by in-situ transmission electron microscopy (TEM). The CNT field emitters examined by in-situ TEM are multiwalled, double-walled and single walled CNTs. Threshold fields for electron emission and sustainable emission currents depending on the structure of CNTs are presented, and degradation mechanism of the CNT field emitters is discussed. In addition to the microscopy studies on individual CNTs, our recent development in surface treatment of CNT layers grown by chemical vapor deposition, which brings about high density of emission current and high uniformity, is also presented.

  • PDF

The Characteristics of PZ-PT-PWN Piezoelectric Ceramics for Application to High Power Device (고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 특성)

  • Jeong, Su-Hyeon;Hong, Jong-Guk;Lee, Jong-Seop;Chae, Hong-In;Yun, Man-Sun;Im, Gi-Jo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.155-160
    • /
    • 2000
  • The piezoelectric properties and the doping effect for$0.95Pb(Zr_xTi_{1-x})O_3+0.05Pb(Mn1/3Nb2/3)O_3$ compositions were studied. Also, the heat generation and the change of electromechanical characteristics, the important problem in practical usage, were investigated under high electric field driving. As a experiment results under low electric field, the values of kp and $\varepsilon33T$ were maximized, but Qm was minimized(Kp=0.57, Qm=1550) in the composition of x=0.51. In order to increase the values of Qm $Nb_2O_5$ was used as a dopant. As the result of that, the grain size was suppressed and the uniformity of grain was improved. Also, the values of kp decreased, and the values of Qm increased with doping concentration of $Nb_2O_5$. As a experiment results under high electric field driving, when vibration velocity was lower than 0.6[m/s], the temperature increase was $20[^{\circ}C]$, and the change ratio of mechanical quality factor was less than 10[%]. So, its electromechanical characteristics was very stable. Conclusively, piezoelectric ceramic composition investigated at this paper is suitable for application to high power piezoelectric devices.

  • PDF

Effect of Current-Aging on Field Emission from Carbon Nanotube Field Emitter Arrays

  • Kim, Ki-Seo;Ryu, Je-Hwang;Lee, Chang-Seok;Manivannan, S.;Moon, Jong-Hyun;Ahn, Jung-Sun;Jang, Jin;Park, Kyu-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.782-785
    • /
    • 2007
  • We studied the effect of current-aging on field emission from carbon nanotubes field emitter arrays (CNT-FEAs) selectively patterned by the resist-assistan tpatterning(RAP) process. After sustaining the electric field when starting emission current density $(J_s)$ is $0.1\;mA/cm^2$ during 40 hrs, it was observed that the field emission property and uniformity were remarkably improved due to the elimination of oxygen atom and thus the reconstruction of carbon bonding at the tip of CNTs during field emission.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Disturbing Factor Analysis of Radiated Susceptibility Test (전자파내성 시험의 방해 요인 분석)

  • Park, Yoon-hyun;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.76-82
    • /
    • 2016
  • In this paper, EMC (electromagnetic compatibility) test standard KN61000-4-3 "radiated RF electromagnetic field and uniformity chapter immunity test" has been used in, this is the electric field strength to be uniformly applied at the time of the test based on environment to understand the elements of change to analyze the interference factor.

  • PDF

Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method (화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.