• 제목/요약/키워드: Electric Coupling

검색결과 444건 처리시간 0.027초

Characteristics of Lightning Overvoltages Coming in Low-Voltage Power Distribution Systems

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Su-Bong;Jeong, Dong-Cheol;Lee, Jae-Bok;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권3호
    • /
    • pp.91-98
    • /
    • 2003
  • The importance of improving the quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and systems. The transient over-voltages on low-voltage power distribution systems are induced by direct or indirect lightning return strokes. These can cause damage and/or malfunction of the utility systems for home automation, office automation, factory automation, medical automation, etc. The behaviors of lightning overvoltages transferred through the transformer to the low-voltage distribution systems using a Marx generator were experimentally investigated. Furthermore, the coupling mechanisms of lightning overvoltages transferred to the low-voltage systems were clearly illustrated through a theoretical simulation using a Pspice program. The overvoltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of the distribution transformer. A superior surge protection scheme is to install surge protection devices at the service entrance switchboard and/or at the load devices in TN power systems.

배전선로 접지저항 및 누설전류 실태조사 (Investigation for Earth Resistance and Leakage Current of D/L)

  • 이현구;하태현;배정효;하윤철;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.379-381
    • /
    • 2003
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. This causes induced voltages on underground metallic pipelines due to the power line currents. This could cause AC corrosion in the pipeline, which could in turn lead to disastrous accidents, such as gas explosion or oil leakage. This paper investigates for the limitation of induced voltage on the buried metal structures which is used in the inside and outside of the country. And then we measure the earth resistance and leakage current of 22.9kV distribution lines and pipe to soil potential of near pipelines in Seoul Korea. Hereby we can see the leakage current flowing through the earthing electrode have an effect on near pipelines.

  • PDF

링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작 (Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion)

  • 심요섭;김청월
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터 (Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps)

  • 우정원;장기찬;김민지;김은수
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

차세대 리튬이차전지용 고체 전해질 기술 (Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries)

  • 김광만;오지민;신동옥;김주영;이영기
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘 (Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM)

  • 김성훈;장원진;조관열;김학원
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

전기자동차용 유·무선 통합 충전을 고려한 무선 충전 시스템의 두 가지 제어 방식에 따른 효율 비교·분석 (Comparison of Efficiency According to the Two Control Method of the Wireless Charging System Considering Wired/Wireless Integrated Charging System for EV)

  • 허훈;이주아;심동현;손원진;이병국
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.228-236
    • /
    • 2022
  • The charging methods of electric vehicles are divided into wired charging and wireless charging. Restrictions on the use of charging infrastructure for wireless charging vehicles currently exist because most charging infrastructure uses the wired charging method. Thus, wired and wireless integrated charging system has been studied. In this system, a wireless charging system especially requires a control method for high-efficiency operation in consideration of a change in a coupling coefficient. Therefore, this paper introduces two control methods for the high-efficiency operation of wireless charging that can be applied to wired and wireless integrated charging systems. In addition, loss analysis is performed through PSIM simulation to select a more advantageous method for high-efficiency operation among the two control methods. To verify the simulation-based loss analysis result, the two control methods are applied to the actual wireless charging system, and the efficiency is compared through the experiments Based on the experimental results, a control method suitable for high-efficiency operation of the wireless charging method is selected.

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • 제9권1호
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.

SUPERDARN과 GREENLAND 자력계를 이용한 전리층 전기전도도의 추정 (ESTIMATION OF IONOSPHERIC CONDUCTIVITY BASED ON THE MEASUREMENTS BY SUPERDARN HF RADARS AND GREENLAND MAGNETOMETERS)

  • 이은아;안병호;이유
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권2호
    • /
    • pp.141-150
    • /
    • 2002
  • 전리층은 우주환경의 변화에 매우 중요한 역할을 하고 있다. 특히 전기전도도 분포에 관한 정보는 자기권-전리층 상호작용을 이해하는데 필수적이다. 이러한 요구에 부응해서 전기전도도를 구하려는 다양한 시도가 있었다. 본 연구에서는 SuperDARN(Super Dual Auroral Radar Network) 레이더망 중 Goose Bay 및 Stokkseyri 레이더에서 관측한 전기장과 Greenland의 서부해안에 설치된 지자기 관측소에서 동시에 얻은 지상 지자기 기록을 이용하여 전기전도도를 추정하였다. 또한 전리층을 흐르는 전류를 무한판상으로 가정하고 Biot-Savart 및 Ohm의 법칙을 적용하여 Hall 및 Pedersen 전기전도도를 추정하였다. 예상한대로 Hall 전기전도도는 오로라 제트전류대의 중심을 따라 상당히 강화됨을 알 수 있었다. 그러나 Pedersen 전기전도도는 광범위한 지역에 서 음의 값이 나타났다. 이러한 문제를 보완하기 위해서 지자기 변화 성분인 ${\Delta}D$에 연자기력선 전류의 효과를 고려하였다. 그 결과 이전에 음으로 나타난 지역이 상당히 감소되었다. 따라서 지상 지자기 변화 자료와 레이더에서 관측된 전기장을 이용해서 전기전도도를 구하는 경우 연자기력선 전류의 효과를 고려해야 한다.