• 제목/요약/키워드: Elastoplastic

검색결과 215건 처리시간 0.023초

단계적 다섬유 Fragmentation 시험법을 이용한 복합재료의 계면적 특성에 대한 새로운 평가방법 (A New Evaluation Method for Interfacial Properties of Composites using the Gradual Multi-Fiber Fragmentation Test)

  • 박종만;김진원
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.10-25
    • /
    • 1999
  • Fragmentation 시험법에 의한 섬유상 복합재료의 계면적 특성에 대한 새로운 평가방법이, 순차적으로 섬유간의 간격이 변하게 된 단계적 다섬유 복합재료를 사용하여 제시되었다. 섬유간의 간격이 증가함에 따라, 부서진 섬유들의 형상비는 감소하였으며, 섬유와 기지간의 계면전단강도는 증가함을 보여주었다. 섬유간 거리의 역수를 취했을 때에, 형상비와 계면전단강도 모두가 포화되는 값을 보여주었다. 이것은 단계적 다섬유 복합재료가 형상비에서의 상한값을 나타내고, 계면전단강도에서 하한값을 보여준다는 것을 의미한다. 이 fragmentation 시험법은 복합재료의 평가에 새로운 방법이 될 수 있다. 왜냐하면, 이 두 한계값의 차이를 줄이는 것이 복합재료의 강화에 효과적이기 때문이다. 또한, 섬유 파괴점 부근에서의 섬유응력 분포와 위의 결과를 관련시키기 위해 탄송-소성 유한요소 해석이 행해졌다. 단계적 다섬유 복합재료 시험에서 얻어진 한계값은 그룹형태의 다 섬유 파괴에 의해 야기된 응력집중과 밀접하게 관련되어 있다는 것이 입증되었다.

  • PDF

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

비선형 이동경화를 고려한 점소성 모델의 내연적 적분 (A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

충격하중을 받는 외팔보의 동적 강소성 응답 (Dynamic Responses of a Rigid-Plastic Cantilever Subject to Impact)

  • 최호웅;신종계
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.72-79
    • /
    • 1998
  • 탄소성 보구조물의 정적 변형은 하중의 크기가 소성붕괴력 $F_c$ 보다 작게 될 때만 적용된다. 그러나 충격이나 폭발 상황에서 소성 붕괴력을 넘는 하중을 받는 보 구조물은 정적인 탄소성 변형과 다른 응답특성을 보이게 된다. 본 논문에서는 간단한 구조 모델로서 강-완전 소성 외팔보를 도입하여 소성 붕괴력보다 큰 하중 ($F>F_c$)이 작용하였을 때 구조물의 응답특성을 연구하였다. 계단 하중(step loading)이 가해졌을 경우에 보의 운동을 무차원하여 계산하고 이 결과를 사각형파 하중(rectangular force pulse)이 가해지는 경우에도 이용하여 해석하였다. 해석 수행 결과 무차원화된 힘을 나타내는 파라메타인 $f{\equiv}F/F_c$의 함수로서 보의 변위를 나타낼 수 있음을 확인하였다.

  • PDF

지진계측 기록을 이용한 저수지 지진응답가속도 증폭 특성 분석 (Analysis of Reservoir Seismic Response Acceleration Amplification Characteristics Using Seismic Measurements Data)

  • 이무재;김용성;타망비벡;이승주;이길용;허준
    • 한국지반신소재학회논문집
    • /
    • 제19권4호
    • /
    • pp.51-63
    • /
    • 2020
  • 본 연구에서는 지진가속도 계측기의 계측 데이터를 사용하여 저수지의 동적해석방법에 대한 모형 검정 및 저수지 높이에 따른 지진가속도 증폭 특성을 분석하였다. 모형을 검정하기 위해 댐 기초의 계측 데이터를 입력 데이터로 사용하였고 해석 결과를 댐 상부의 계측 데이터와 비교한 결과 수치해석을 이용해 출력된 지진파와 계측 지진파의 최댓값과 그 파형이 비슷하게 나타났고 지진가속도 증폭 특성의 경우 지진가속도 증폭비는 저수지의 높이와 지진의 크기에 비례하는 것으로 나타났다. 본 연구를 통해 저수지에 설치된 가속도계에서 얻은 계측 데이터를 활용하여 반복 탄소성 구성식을 이용한 동적해석방법은 지진파 특성 분석이 적절하게 수행될 수 있는 기법임을 확인하였고 향후 이러한 기법을 적용해 저수지의 지진가속도 계측기의 활용도를 제고할 수 있을 것으로 판단된다.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Nonlinear creep model based on shear creep test of granite

  • Hu, Bin;Wei, Er-Jian;Li, Jing;Zhu, Xin;Tian, Kun-Yun;Cui, Kai
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.527-535
    • /
    • 2021
  • The creep characteristics of rock is of great significance for the study of long-term stability of engineering, so it is necessary to carry out indoor creep test and creep model of rock. First of all, in different water-bearing state and different positive pressure conditions, the granite is graded loaded to conduct indoor shear creep test. Through the test, the shear creep characteristics of granite are obtained. According to the test results, the stress-strain isochronous curve is obtained, and then the long-term strength of granite under different conditions is determined. Then, the fractional-order calculus software element is introduced, and it is connected in series with the spring element and the nonlinear viscoplastic body considering the creep acceleration start time to form a nonlinear viscoplastic creep model with fewer elements and fewer parameters. Finally, based on the shear creep test data of granite, using the nonlinear curve fitting of Origin software and Levenberg-Marquardt optimization algorithm, the parameter fitting and comparative analysis of the nonlinear creep model are carried out. The results show that the test data and the model curve have a high degree of fitting, which further explains the rationality and applicability of the established nonlinear visco-elastoplastic creep model. The research in this paper can provide certain reference significance and reference value for the study of nonlinear creep model of rock in the future.