• Title/Summary/Keyword: Elastomeric polymer

Search Result 52, Processing Time 0.023 seconds

Ink dependence of elastomeric stamp in non-photolithography

  • Kim, Jin-Ook;Park, Mi-Kyung;Lee, C.H.;Jo, G.C.;Chae, G.S.;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.919-921
    • /
    • 2005
  • We describe that an elastomeric stamp of poly(dimethylsiloxane) (PDMS) can modify the surface energy of some surfaces when brought into conformal contact with the number of stamping. We focus on an increase of the hydrophobicity of the patterned surface due to diffusion of low molecular weight (LMW) silicone polymer chains. The transfer of PDMS to the surface during patterning is relevant to and calls for attention by those who are using this method in applications where control of the surface chemistry is of importance for the application.

  • PDF

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

Micro Patterning Using Active Polymer Pen Array (능동 폴리머 펜 어래이를 이용한 미세 패터닝)

  • Han, Yoonsoo;Hong, Jihwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.853-857
    • /
    • 2013
  • We design, develope and test a parallel active polymer pen lithography (PPL) device, which consists of individually addressable elastomeric probe tips. The PPL array chip is fabricated using soft lithography method with polydimethylsiloxane (PDMS) material. Individual probe can be pneumatically actuated via a computer controlled interface. We demonstrate parallel writing with 16 individually addressed pens, with each pen producing a different pattern in the same run. The largest proof-of-concept array fabricated is $4{\times}4$ with a spacing of $250{\mu}m$ in both x and y axes.

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Shinzo, Kohjiya
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.

Preparation and Properties of Thermoplastic Polyurethane Copolymers (열가소성 폴리우레탄의 합성 및 성질)

  • Heo, Jae-Ho;Kim, Eun-Yeong;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.465-467
    • /
    • 1996
  • A series of thermoplastic polyurethane copolymers were prepared from polypropyleneglycol(PPG, MW 3000), 1,4-butanediol, Isophorone diisocyanate(IPDI) and dibutyltin dilaurate(BBT) as catalyst. Studies have been made on the effects of molar ratio of isocyanate /polyol/chain extender on the properties such as tensile and thermal properties. By varying the ration of hard to soft segments, TPU ranging from soft elastomeric polymer to relatively hard elastoplastics and be obtained. The storage modulus and glass transition temperature of TPU increased with increasing the hard segment content.

  • PDF

Emerging Technologies of Elastomers (엘라스토머의 새로운 도약)

  • Jeong, Kwang-Un;Jin, Kwang-Yong;Nah, Chang-Woon;Lee, Myong-Hoon
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Up to now, most of researches and practical applications of polymeric elastomers have been focused on rubber, a type of elastomeric materials. Therefore, it has been widely accepted that rubber industry is tire industry. In this review, we would like to illuminate new emerging technologies of elastomers. Among many examples, there are actuators which can transform their mechanical shapes with respect to the surrounding environments. Paper folding (so called "origami" in Japanese) technology can be another good example. Utilizing paper folding technology, three-dimensional (3D) architectures containing multi-functions can be constructed from programmed 2D structures. Elastomer microlens can also be fabricated using lithography technologies combined with chemical reactions.

Assessment of Geosynthetic Properties of Rubber Reinforced Composites (고무강화 복합재료의 지반용 특성 평가)

  • Jeon, H.Y.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • Rubber related geosynthetics(GS) as reinforcement and water barrier materials were manufactured by thermal bonding method and examined the their performance for applications to civil and environmental engineering fields. The spunbonded polyester nonwoven, fiber glass mat and fabric type geogrid of a high tenacity polyester filament were used as matrix and polyester film, elastomeric bitumen with SBS polymer and asphalt were used as reinforcements to manufacture the rubber related geosynthetics. A fiber glass mat and geogrid matrix GS showed more excellent mechanical properties and nonwoven and elastomeric bitumen matrix showed the more excellent permittivity. Softening points of rubber and asphalt mixture showed no difference and dimensional stability at high temperature, $120^{\circ}C$, represented no significant shrinkage. Resistance to ultraviolet of rubber related geosynthetics showed no visible alteration.

  • PDF

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.

Preparation and Characterization of Elastomeric Solid Electrolyte Based on $PEO-EDA-LiClO_4$ Blends ($PEO-EDA-LiClO_4$ 블렌드계 탄성체 전해질의 제조와 특성)

  • Chang, Young-Wook;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • Solid polymer electrolytes were prepared by UV irradiation of the blends consisting of poly(ethylene oxide)(PEO), epoxy diacrylate(EDA) and LiClO_4$. Conductivities of the electrolyte films were measured as a function or blend composition, salt concentration and temperature. The electrolyte having the composition of poly(ethylene oxide) (70% by weight)/epoxy diacrylate (30% by weight) with mole ratio of 10 of ethylene $oxide/Li^+$ exhibited a high ionic conductivity of $1.2{\times}10^{-5} S/cm$ at $25^{\circ}C$. This blend is transparent and shows elastomeric properties. Morphological studies by means of differential scanning calorimetry, X-ray diffraction and polarized optical microscopy indicated that the cured epoxy chains in the blends inhibit the crystallization of poly (ethylene oxide) and thereby induce the blend systems to be completely amorphous in certain compositions.