• Title/Summary/Keyword: Elastomeric bushing

Search Result 13, Processing Time 0.018 seconds

Design of a Torque Arm Pin and Elastomeric Bushings for the Three-point-Suspension Gearbox of a Wind Turbine (풍력발전기용 3점 지지 기어박스의 토크암 핀 및 탄성중합체 부싱 설계)

  • Shim, Sung Bo;Nam, Ju Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, analytical methods for designing a torque arm pin and elastomeric bushings of a conventional-type three-point-suspension gearbox of a wind turbine are investigated. The design loads for the torque arm were derived by considering the effects of the transmitted torque and self-weight of the gearbox. Based on the design loads, design methods for the torque arm pin and elastomeric bushings were introduced in the terms of material and size selection. Finally, a small-scale conventional-type gearbox was designed by applying the derived design methods. This study is an elementary and analytical study for the design of the torque arm pin and elastomeric bushings. It is necessary to verify and supplement the results further through extensive experimentation.

A Study on the Empirical Modeling of Rubber Bushing for Dynamic Analysis (동역학 해석을 위한 고무부싱의 실험적 모델링에 대한 연구)

  • Sohn, Jeong-Hyun;Baek, Woon-Kyung;Kim, Dong-Jo
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.